

EPAT'14 : École de Printemps sur l'Apprentissage arTificiel 2014

7-12 juin 2014 Carry-le-Rouet (France)

Plan

Introduction

The problem

- Consenus Clustering & Collaborative Clustering
- Collaborative clustering
 - Horizontal collaboration
 - Vertical collaboration
- Topological Collaborative Clustering
- Diversity Analysis
 - The problem
 - Proposed solutions
- Real applications
- Conclusions

Introduction

Difficulties

- The objects are not labeled, ...

- We need to use a similarity measure (for which variables?)
- Do we need to know a priori the number of classes?
- How to characterize clusters?

Introduction : Clustering

Grouping together of "similar" objects

- Hard Clustering -- Each object belongs to a single cluster
- Soft Clustering -- Each object is probabilistically assigned to clusters

In general, the formalization of the Clustering problem is determined by the following components:

Data representation (categorical, binary, graph...) The affinity measures (similarity, distance,..) The objective function The optimization procedure Data distribution ...

Introduction - Fusion vs Collaboration

The principle of the Fusion

The principle of the Collaboration

- Collaborate the datasets of different size;
- Use the same clustering method + a collaboration step;
- Use this schema for different datasets or for the multi-views datasets;

Collaboration : principle

The problem

The collaborative clustering is an emerging problem

Some works (fusion & collaboration) :

- □ Pedrycz & Rai 2008 (Collaboration);
- □ Costa da Silva & Klusch, 2006 (Collaboration);
- □ Wemmert & al., 2007 (Collaborative and Fusion);
- □ Cleuziou et al., 2009 (Horizontal Collaboration);
- □ Forestier et al., 2009 (Fusion/Collaboration);
- □ Grozavu et al., 2009 (Fusion, Collaboration);
- □ Strehl & Ghosh, 2002 (Fusion).

 Collaborative Topological Learning uses the principle of the Collaborative Fuzzy c-means (Pedrycz & Rai, 2002)

Strehl & Ghosh, 2002 (Fusion)

- Compute the normalized mutual information (NMI) for each dataset ;
- Compute the mean of the NMI for a set of *r* classes (labels) ANMI;

Costa da Silva & Klusch, 2006 (Collaboration)

Distributed Data Clustering (DDC) :

- □ KDEC Density estimation based Distributed Clustering;
- □ Compute the densities for each local DB:

$$\hat{\varphi}_{K,h}[S](\vec{x}) = \sum_{i=1}^{N} K\left(\frac{d(\vec{x}, \vec{x}_i)}{h}\right)$$

□ Send these densities to a « *helper site* » which will build the global clustering and send these information to other local sites.

Bennani et al., 2009 (Fusion)

Fusion of several classifications using Relational Analysis approach (AR)

1st fusion of SOM clustering: RA consensus

Coding Type 1 (NxC) RA1 O1 X_{1E} Fusion of C SOM clustering results SOM1 SOM2 ... SOMC by RA from Type 1 coding O1 : X11 X12 XIC O2 : X21 X22 ... X_{2C} ON : XNI XNC XN2 ON XNE Coding Type 2 (NxD) RA₂ X_{1E} Fusion of D SOM clustering results O_1 SOM1 SOM2 ... SOMD by RA from Type 2 coding O_1 : X_{11} X12 XID O2 : X21 X22 ... X2D ON : XNI XN2 X_{ND} ON XNE RAK Coding Type K (NxE) O_1 X1E Fusion of E SOM clustering results SOM1 SOM2 ... SOME by RA from Type K coding O_1 : X11 X12 X1E O_2 : X_{21} X22 ... X2E . ON : XN1 ON XNE X_{N2} XNE

Costa da Silva & Klusch, 2006 (Collaboration)

Distributed Data Clustering (DDC) :

- □ KDEC Density estimation based Distributed Clustering;
- □ Compute the densities for each local DB:

$$\hat{\varphi}_{K,h}[S](\vec{x}) = \sum_{i=1}^{N} K\left(\frac{d(\vec{x}, \vec{x}_i)}{h}\right)$$

□ Send these densities to a « *helper site* » which will build the global clustering and send these information to other local sites.

Pedrycz & Rai 2008 (Collaboration)

• Fuzzy C-Means Clustering (FCM) :

• For each dataset, build granular prototypes using the partitions matrix;

Collaborative Clustering

Three main types of collaboration :

1. Horizontal

All datasets are described by the same observations but in different spaces Of description (different variables).

2. Vertical

Nxd₃ All the datasets have the same variables (same description space), but have different observations.

Nxd₁

Nxd₄

Horizontal collaboration

							Same			
ID	Att1	Att2	Att3	ID	Att4	Att5	samples	ID	Att6	Att7
id1				id1				id1		
id2				id2				id2		
id3				id3				id3		
id4				id4				id4		
id5				id5				id5		
id6				id6				id6		
id7				id7				id7		
id8				id8				id8		
id9				id9				id9		
	1 [4]				1 [0]					

Dataset [1]

Dataset [2]

Dataset [P]

Vertical Collaboration

ID	Att 1	Att 2	Att 3	Att 4
Id1				
Id2				
Id3				
Id4				
ID	Att 1	Att 2	Att 3	Att 4
Id5				
Id6				
Id7				
		:		
		•		
ID	Att 1	Att 2	Att 3	Att 4
Id8				
Id9				

Horizontal collaboration vs Vertical collaboration

The problem

How to improve the local clustering derived out of a set of distant clustering results without sharing the initial data ?

Collaborative FCM (Pedrycz, 2002)

Collaborative FCM (Pedrycz, 2002)

The distance function between the **i**th prototype and the **k**th pattern in the same subset is denoted by $d_{ik}^{2}[ii]$, i = 1, 2, ..., c, k = 1, 2, ..., N and ii = 1, 2, ..., P

Collaborative FCM (Pedrycz, 2002)

Each entry of the collaborative matrix describes the intensity of the interaction. In general, α [ii,kk] assumes nonnegative values.

Collaboration in the clustering scheme represented by the matrix of collaboration levels between the subsets; the partition matrices generated for each data set are shown.

General collaborative clustering scheme (Pedrycz, 2002)

Given: subsets of patterns X_1, X_2, \ldots, X_P

Select: distance function, number of clusters (c), termination criterion, and collaboration matrix $\alpha[ii, jj]$.

Compute: initiate randomly all partition matrices $U[1], U[2], \ldots, U[P]$

Phase I

For each data

repeat

```
compute prototypes \{\mathbf{v}_i[ii]\}, i = 1, 2, ..., c and partition matrices U[ii] for all subsets of patterns until a termination criterion has been satisfied
```

Phase II

repeat

For the given matrix of collaborative links α[*ii*, *jj*], compute prototypes and partition matrices U[*ii*] using (7.4) and (7.7) *until* a termination criterion has been satisfied

Quantification of the Collaborative Phenomenon of Clustering (Pedrycz, 2002)

The intensity of collaboration :

$$\delta = \|U[ii] - U_{\text{ref}}[ii]\|$$

U [ii] to denote the partition matrix produced independently of other sources ref

Consistency measure :

$$\phi[ii, jj] = \|U[ii] - U[jj]\|$$

indicates the structural differences between the partition matrices defined over two data sets (ii and jj, respectively)

Topological Collaborative Clustering

Prototype based Clustering (SOM)

$$K_{\delta(i,j)} = \exp\left(-\frac{\delta^2(i,j)}{T^2}\right)$$

Neighborhood function

$$w^{*} = \arg\min_{w} \left\{ \sum_{i=1}^{N} \sum_{j=1}^{|w|} K_{\delta(j,\chi(x_{i}))} \|x_{i} - w_{j}\|^{2} \right\}$$
Assignment function

$$\chi(x_{i}) = \arg\min_{j} \left(\left\|x_{i} - w_{j}\right\|^{2} \right)$$

N : number of observations x, |W| : number of prototypes w

Horizontal Collaboration

$$w^{*} = \arg\min_{w} \left\{ R_{SOM}^{[ii]}(\chi, w) + R_{Col_{-H}}^{[ii]}(\chi, w) \right\}$$
Collaboration coefficient
Collaboration term
$$R_{Col_{-H}}^{[ii]}(\chi, w) = \sum_{j=1, jj \neq ii}^{P} \alpha_{[ii]}^{[jj]} \sum_{i=1}^{N} \sum_{j=1}^{|w|} \left(K_{\delta(j,\chi(x_{i}))}^{[ii]} - K_{\delta(j,\chi(x_{i}))}^{[jj]} \right)^{2} \left\| x_{i}^{[ii]} - w_{j}^{[ii]} \right\|^{2}$$

$$R_{SOM}^{[ii]}(\chi, w) = \sum_{i=1}^{N} \sum_{j=1}^{|w|} K_{\delta(j,\chi(x_{i}))}^{[ii]} \left\| x_{i}^{[ii]} - w_{j}^{[ii]} \right\|^{2}$$

 $N^{[ii]}$: the number of observations on the datasets [ii], P : the number of datasets

Learning Algorithm

Algorithm 1: The horizontal collaboration algorithm

Fix the collaboration matrix $\alpha_{[ii]}^{[jj]}$

1. Local step:

For each dataset BD[ii], ii = 1 to P:

Find the prototypes minimizing the classical SOM objective function:

$$w^* = \operatorname*{arg\,min}_{w} \left[R^{[ii]}_{SOM}(\chi, w) \right]$$

2. Collaboration step:

For the horizontal collaboration of the [ii]-th map with the [jj]-th map:

Update the prototypes of the [ii]-th map minimizing the objective function of the horizontal collaboration:

$$w_{jk}^{*[ii]} = \frac{\sum_{i=1}^{N} K_{\sigma(j,\chi(x_i))}^{[ii]} x_{ik}^{[ii]} + \sum_{jj=1,jj\neq ii}^{P} \sum_{i=1}^{N} \alpha_{[ii]}^{[jj]} \left(K_{\sigma(j,\chi(x_i))}^{[ii]} - K_{\sigma(j,\chi(x_i))}^{[jj]} \right)^2 x_{ik}^{[ii]}}{\sum_{i=1}^{N} K_{\sigma(j,\chi(x_i))}^{[ii]} + \sum_{jj=1,jj\neq ii}^{P} \sum_{i=1}^{N} \alpha_{[ii]}^{[jj]} \left(K_{\sigma(j,\chi(x_i))}^{[ii]} - K_{\sigma(j,\chi(x_i))}^{[jj]} \right)^2}$$

Vertical Collaboration

$$w^{*} = \arg\min_{w} \left\{ R_{SOM}^{[ii]}(\chi, w) + R_{Col_{V}}^{[ii]}(\chi, w) \right\}$$
Collaboration coefficient
$$R_{Col_{V}}^{[ii]}(\chi, w) = \sum_{jj=1, jj \neq ii}^{P} \alpha_{[ij]}^{[jj]} \sum_{i=1}^{N} \sum_{j=1}^{|w|} \left(K_{\delta(j,\chi(x_{i}))}^{[ii]} - K_{\delta(j,\chi(x_{i}))}^{[jj]} \right)^{2} \left\| w_{j}^{[ii]} - w_{j}^{[ii]} \right\|^{2}$$

$$R_{SOM}^{[ii]}(\chi, w) = \sum_{i=1}^{N} \sum_{j=1}^{|w|} K_{\delta(j,\chi(x_{i}))}^{[ii]} \left\| x_{i}^{[ii]} - w_{j}^{[ii]} \right\|^{2}$$

 $N^{[ii]}$: the number of observations on dataset [ii], P : the number of datasets sites

Learning algorithm

Algorithm 2: Vertical Collaboration algorithm

Fix the collaboration parameter $\alpha_{[ii]}^{[jj]}$

1. Local step:

For each dataset BD[ii], ii = 1 to P:

Find the prototypes minimizing the classical SOM objective function:

$$w^* = \operatorname*{arg\,min}_{w} \left[R^{[ii]}_{SOM}(\chi, w) \right]$$

2. Collaboration step:

For the vertical collaboration of the [ii]-th map with the map [jj]:

Update the prototypes of the [ii]-th map minimizing the objective function of the vertical collaboration:

$$w_{jk}^{*[ii]} = \frac{\sum_{i=1}^{N^{[ii]}} K_{\sigma(j,\chi(x_i))}^{[ii]} x_{ik}^{[ii]} + \sum_{jj=1,jj\neq ii}^{P} \sum_{i=1}^{N^{[ii]}} \alpha_{[ii]}^{[jj]} \left(K_{\sigma(j,\chi(x_i))}^{[ii]} - K_{\sigma(j,\chi(x_i))}^{[jj]} \right)^2 w_{ik}^{[jj]}}{\sum_{i=1}^{N} K_{\sigma(j,\chi(x_i))}^{[ii]} + \sum_{jj=1,jj\neq ii}^{P} \sum_{i=1}^{N} \alpha_{[ii]}^{[jj]} \left(K_{\sigma(j,\chi(x_i))}^{[ii]} - K_{\sigma(j,\chi(x_i))}^{[jj]} \right)^2}$$

Ilustrative example

Waveform dataset

- **5000** samples
- 40 variables where 19 variables are Gaussian noisy
- 3 classes

Horizontal Collaboration (waveform)

Horizontal Collaboration (waveform)

Horizontal Collaboration (waveform)

Validation de l'approche collaboratif sur différents bases de données

Collaboration horizontale

Dataset	DB	Purity	QE
wdbc	SOM1	94.9550	1.9993
	SOM2	97.2777	2.0749
	SOM12		
	SOM21		
isolet 5x5	SOM1	81.2081	12.6149
	SOM2	95.1220	14.4591
	SOM12		
	SOM21	5	
madelon	SOM1	60.8879	15.5896
	SOM2	62.6402	15.5065
	SOM12		
	SOM21	5	5
spam	SOM1	83.8603	3.4582
	SOM2	85.7205	2.5580
	SOM12	•	
	SOM21		

Collaboration verticale

Dataset	DB	Purity	QE
wdbc	SOM1	96.7153	90.5413
	SOM2	97.8723	67.6035
	SOM12		
	SOM21	•	
isolet 5x5	SOM1	98.8506	8.1904
	SOM2	98.4615	8.7671
	SOM12	•	•
	SOM21	•	👎
madelon	SOM1	69.7198	612.3251
	SOM2	69.8718	611.5365
	SOM12		
	SOM21	9	9
spam	SOM1	76.2624	61.8324
	SOM2	70.4306	48.2763
	SOM12	•	
	SOM21		

Probabilistic Collaborative Clustering

Probabilistic Clustering

Generative Topographic Mapping [Bishop 95]

$$y = y(z, W) = W\Phi(z)$$

$$p(x_n | z, W, \beta) = \mathcal{N}(y(z, W), \beta)$$

$$\mathcal{L}(W, \beta) = \sum_{n=1}^{N} \ln \left\{ \frac{1}{K} \sum_{i=1}^{K} p(x_n | z_i, W, \beta) \right\} \Longrightarrow \text{EM Algorithm}$$

E & M steps

E step - Computing posterior probabilites

$$egin{aligned} & r_{in} &= & p(z_i | x_n, W_{old}, eta_{old}) \ &= & rac{p(x_n | z_i, W_{old}, eta_{old})}{\sum_{i'=1}^{K} p(x_n | z_i', W_{old}, eta_{old})} \end{aligned}$$

M step - Updating parameters

$$\mathbb{E}[\mathcal{L}_{comp}(W,\beta)] = \sum_{n=1}^{N} \sum_{i=1}^{K} r_{in} \ln\{p(x_n | z_i, W, \beta)\}$$
$$\Phi^T G \Phi W_{new}^T = \Phi^T R X$$
$$\frac{1}{\beta_{new}} = \frac{1}{ND} \sum_{n=1}^{N} \sum_{i=1}^{K} r_{in} ||x_n - W^{new} \phi(z_i)||^2$$

Topological Collaborative Clustering

Collaborative Clustering : local step + collaboration step $R_{H}^{[ii]}(W) = R_{Quantiz}(W) + R_{Collab}(W)$

Prototype based Clustering

$$R_{Quantiz}(W) = \sum_{jj=1, jj \neq ii}^{P} \alpha_{[ii]}^{[jj]} \sum_{i=1}^{N} \sum_{j=1}^{|w|} \mathcal{K}_{\sigma(j,\chi(x_i))}^{[ii]} \|x_i^{[ii]} - w_j^{[ii]}\|^2$$
$$R_{Collab}(W) = \sum_{jj=1, jj \neq ii}^{P} \beta_{[ii]}^{[jj]} \sum_{i=1}^{N} \sum_{j=1}^{|w|} \left(\mathcal{K}_{\sigma(j,\chi(x_i))}^{[ii]} - \mathcal{K}_{\sigma(j,\chi(x_i))}^{[jj]}\right)^2 * \|x_i^{[ii]} - w_j^{[ii]}\|^2$$

Probabilistic Clustering

$$\mathcal{L}^{hor}[ii] = \mathbb{E}[\mathcal{L}_{comp}(W^{[ii]}, \beta^{[ii]})] - \sum_{[ij]=1, [ij]\neq [ii]}^{P} \alpha_{[ii]}^{[ij]} \sum_{n=1}^{N} \sum_{i=1}^{K} \frac{\beta^{[ii]}}{2} (r_{in}^{[ii]} - r_{in}^{[ij]})^{2} ||x_{n} - W^{[ii]}\phi^{[ii]}(z_{i})||^{2}$$

Collaborative Generative Topographic Mapping

Horizontal approach

$$\mathcal{L}^{hor}[ii] = \mathbb{E}[\mathcal{L}_{comp}(W^{[ii]}, \beta^{[ii]})] - \sum_{[ji]=1, [ji]\neq [ii]}^{P} \alpha_{[ii]}^{[ji]} \sum_{n=1}^{N} \sum_{i=1}^{K} \frac{\beta^{[ii]}}{2} (r_{in}^{[ii]} - r_{in}^{[jj]})^{2} ||x_{n} - W^{[ii]}\phi^{[ii]}(z_{i})||^{2}$$

Vertical approach

$$\mathcal{L}^{ver}[ii] = \mathbb{E}[\mathcal{L}_{comp}(W^{[ii]}, \beta^{[ii]})] - \sum_{[ji]=1, [ji]\neq[ii]}^{P} \alpha_{[ii]}^{[ji]} \sum_{n=1}^{N[ii]} \sum_{i=1}^{K} r_{in} \frac{\beta^{[ii]}}{2} \|W^{[ii]}\phi^{[ii]}(z_i) - W^{[ji]}\phi^{[ji]}(z_i)\|^2$$

Some experimental results

Dataset	Мар	Purity
Waveform	GTM ₁	86.44
	GTM ₂	86.52
	$GTM_{1\rightarrow 2}$	87.16
	$GTM_{2\rightarrow 1}$	87.72
Wdbc	GTM ₁	96
	GTM ₂	96.34
	$GTM_{1\rightarrow 2}$	96.08
	$GTM_{2\rightarrow 1}$	96.15
Isolet	GTM ₁	87.17
	GTM ₂	86.83
	$GTM_{1\rightarrow 2}$	87.29
	$GTM_{2\rightarrow 1}$	85.87
SpamBase	GTM ₁	52.05
	GTM ₂	51.68
	$GTM_{1\rightarrow 2}$	52.41
	$GTM_{2\rightarrow 1}$	52.17

Waveform

SpamBase

Purity

Collaborative Clustering Diversity analysis

Diversity : why?

Studied in Consensus clustering

Dataset X containing 15 samples

Diversity : why?

Studied in Consensus clustering

Dataset X containing 15 samples

Studied in Consensus clustering

Dataset X containing 15 samples

Algo1	10/15 = 0.667
Algo2	10/15 = 0.667
Algo3	10/15 = 0.667

Studied in Consensus clustering

Nxd₁

Algo2

Algo1

Algo3

Studied in Consensus clustering

Nxd₁

Algo2

Algo1

Algo3

Studied in Consensus clustering

Nxd₁

Algo2

Algo1

Algo3

Collaborative clustering

X1

X2 X3

GTM1<-2

GTM2<-1

GTM3<-2

Dataset X1 containing 15 samples Dataset X2 containing 15 samples Dataset X3 containing 15 samples

٦П

 . .

Diversity measures

index	formula
Rand index	$Rand = \frac{a_{00} + a_{11}}{a_{00} + a_{01} + a_{10} + a_{11}}$
Adjusted Rand index	$AdjustedRand = rac{a_{00} + a_{11} - n_c}{a_{00} + a_{01} + a_{10} + a_{11} - n_c}$
Jaccard index	$Jaccard = rac{a_{11}}{a_{01}+a_{10}+a_{11}}$
Wallace's coefficient	$W_{P1 \to P2} = \frac{a_{11}}{a_{11} + a_{10}}$ and $W_{P2 \to P1} = \frac{a_{11}}{a_{11} + a_{01}}$
Adjusted Wallace index	$AW_{P1\to P2} = \frac{W_{P1\to P2} - Wi_{P1\to P2}}{1 - Wi_{P1\to P2}}$
Normalized Mutual Information	$NMI = rac{-2\sum_{ij}n_{ij}lograc{n_{ij}N}{n_in_j}}{\sum_i n_ilograc{n_i}{N} + \sum_j n_jlograc{n_j}{N}}$
Variation of Information	$VI = -2\sum_{ij} \frac{n_{ij}}{N} log \frac{n_{ij}N}{n_i n_j} - \sum_i \frac{n_i}{N} log \frac{n_i}{N} - \sum_j \frac{n_j}{N} log \frac{n_j}{N}$

Diversity measures on waveform datasets

Table 1: Diversity measure on the wavelorm subs

Subset	Relevant datasets		Relevant vs Noisy datasets		Noisy datasets	
Diversity index	db2/db3	db3/db4	db2/db8	db4/db9	db7/db8	db9/db10
Rand	0.6707	0.7042	0.5539	0.555	0.543	0.5553
Adjusted Rand	0.2625	0.3356	0.00008	0.0002	0.00002	0.00004
Jaccard	0.3429	0.3869	0.2017	0.2008	0.2	0.2003
Wallace's coefficient	0.5079	0.5578	0.3332	0.3342	0.33	0.3334
Adjusted Wallace	0.5135	0.5581	0.3383	0.3347	0.35	0.3411
Normal Mutual Information	0.262	0.3072	0.0002	0.0006	0.0003	0.0004
Variation of Information	2.334	2.1918	3.1577	3.1631	3.168	3.1664

Collaborative clustering

X1

X2

X3

GTM1<-2

GTM2<-1

GTM3<-2

Dataset X1 containing 15 samples Dataset X2 containing 15 samples Dataset X3 containing 15 samples

Need to study the local quality.

Results : 10 waveform sub-sets

The plot of diversity and the accuracy difference after collaboration

Results : 1-1.000 waveform sub-sets

Waveform datasets: Collaboration results between a fixed subset and 1000 randomly subsets (axe X represents the Diversity and axe Y - the Accuracy gain)

Collaboration results (1)

Collaboration results between a fixed subset and 1000 randomly subsets

axe X represents the Diversity and axe Y - the Accuracy gain

Collaboration results (2)

Collaboration results between a fixed subset and 1000 randomly subsets

axe X represents the Diversity and axe Y - the Accuracy gain

Collaborative Clustering and Consensus Clustering

real applications

Images : Strasbourg satellite image (1)

Projet COCLICO

The authors would like to thank CESBIO (Danielle Ducrot, ClaireMarais-Sicre, Olivier Hagolle, Mireille Huc and Jordi Inglada) for providing the land-cover maps and the geometrically and radiometrically corrected Formosat-2 images.

Projet COCLICO

Before collaboration

After collaboration

System for searching visual information

Multimodal information : prediction

Application context:

• A Wikipedia dataset containing a set of 20.000 images from wikipedia and ttransformed into numerical values by Xerox research center.

Resulats:

- Reduce the dimensionality of this dataset of size 20.000 x 12.800 into 20.000 x 10
- Patent (THALES, Paris 13 University) N°: 08 06947 Inventors: BENHADDA H., BENNANI Y., LEBBAH M., GROZAVU N.

Recall : topological learning

Conventional search engine

listegg.com

France's Flag 400 x 268 - 3 ko - gif atlanticneighbours...

640 x 427 - 3 ko - png

media.battlestarwiki.org

File:Flag of

France National 250 x 167 - 2 ko - gif the-flag-makers.com

boys of the neighborhood

world-peace.over-blog.com

494 x 332 - 4 ko - gif

Image:Flag of

800 x 533 - 5 ko - pno

flag france Rechercher

de.gentoo-wiki.com

Origine : France 405 x 266 - 14 ko - jpg passioncompassion1418.com

Résultats 64 à 84 sur un total d'environ 13 700 000 (0.11 secondes)

Travel Directory

494 x 332 - 3 ko - gif

aprilmiohnson.com

French League on Saturday 450 x 300 - 5 ko - png 496 x 656 - 93 ko - jpg sportige.com web-enjoy.fr

all 250freecards com

French people call their 500 x 329 - 4 ko - gif my.uen.org

Contrôles sécurité gaz 400 x 320 - 13 ko - jpg eugascertification.com

Example of image search using a traditional search engine (France flag)

Research time: 0,11s; Browsing the collection of images by user : 15 days (13.700.000 images / 21 images/pages = 652.380 pages * 2 s = 1.304.760 s (362 h or 15 days))

Map of images

Wikipedia (19.000 x 6400) x 2

Hierarchical SOM (3D view)

Intelligent system based on the Topological Learning

Feature extraction from images

Principle

rigure 5.0: General Schema of the Fusion Procedure

Relational Analysis (Marcotorchino al. 1980)

1- Pairwise comparison principle

2- (0,1) Linear programming modelling

We denote F(R, X) - the linear criterion measuring the adequacy between the data R and the solution X, the mathematical formulation of the problem is: max F(R, X)

Χ

Under the linear constraints generated by the properties of X.F

Α

в

С

D

Е

F

Coding et Fusion

1st fusion of SOM clustering: RA consensus

Dimensionality reduction

New image assignment

$$\chi(x_i) = \arg\min_{j} \left(\left\| x_i - w_j \right\|^2 \right)$$

Demonstration video

BREVET (THALES, Université Paris 13) N°: 08 06947

-	Client RARES		
Fichier Option			
Serveur Table Configuration Variables Preprocessing Wikipedia_All_1			
Résumé COL_batch \times COL_dist1 \times Synthetique \times Voir l'arbre de sous classific	ation \times Cluster 81 \times		
Nombre de classes: 306			
Nombre d'individus: 17812			
Nombre de variables: 2			
Nombres de modalités: 337			
Chemin pour trouver les images	/home/nistor/WIKIPEDIA/IMAGES		
Statistiques sur la population totale	C		
Representation synthétique des modalité les plus discrimantes pour chaque classe			
Voir l'arbre de sous classification	А		
Voir l'arbre de sous classification (radial)	5		
Aller voir la classe:	Selectionnez une classe 🔻		
Aller voir la variable:	Selectionnez une variable 🔻		
Recherche	⊕ _		
Commentaires:			
	0	XVidCap	

BENHADDA H., BENNANI Y., LEBBAH M., GROZAVU N. «SYSTEME DE RECHERCHE D'INFORMATION VISUELLE», BREVET 08 06947.

LEBBAH M., BENNANI Y., BENHADDA H., GROZAVU N., (2009), «Relational Analysis for Clustering Consensus», Invited Book Chapter, Machine Learning, ISBN 978-953-7619-X-X, IN-TECH Publisher.

Conclusions

- The collaborative clustering allows:
 - □ An interaction between different datasets
 - □ Reveal underlying structures and patterns within data sets.
- During the collaboration step, where is no need of data, the algorithm requires only the clustering results of other datasets.
 - □ obtain a new classification that is as close as possible to that which would have obtained if we had centralized datasets and then make a partition.
- The quality of the local clustering algorithm is very important for the collaboration's quality improvement regarding the diversity index
 Overall, the variability of the collaboration's quality increase with the diversity
- Create a *«helper site»* which will build the global clustering and send these information to other local sites
- Use the diversity for Selective Collaborative Clustering