

Apprentissage par factorisation matricielle

Younès BENNANI et levgen REDKO LIPN, Université Paris 13 – Sorbonne Paris Cité

EPAT'14 – Carry-Le-Rouet 7-12 juin 2014

Matrix factorizations

- What can a matrix represent?
 - System of equations
 - User rating matrix
 - Image
 - Matrix structure in graph theory
 - Adjacent matrix
 - Distance matrix

Some common matrix factorizations...

Principal Components Analysis

PCA (Principal Components Analysis)

• PCA computes the most meaningful basis a noisy, garbled data set. The hope is that this new basis will filter out the noise and reveal the hidden dynamics.

Example:

Singular Value Decomposition

• SVD (Singular Value Decomposition)

SVD is based on a theorem which says that a rectangular matrix A can be broken down into the product of three matrices A = USV^T where U^TU = I_m, V^TV = I_n; the columns of U are orthonormal eigenvectors of AA^T, the columns of V are orthonormal eigenvectors of A^TA, and S is a diagonal matrix containing the square roots of eigenvalues from U or V in descending order.

Example:

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Apprentissage par factorisation matricielle (EPAT'14 – Carry-Le-Rouet 7-12 juin 2014)

Why Nonnegative?

- Some datasets are intrinsically non-negative:
 - Counters (e.g., no. occurrences of each word in a text document)
 - Intensities (e.g., intensity of each color in an image)
 - Similarity matrices
- Data matrix X has only non-negative values:
 - Decompositions such as SVD may give a result with negative values
 - Negative values describe the absence of something
 - They have no natural interpretation

Standard NMF

[Lee and Seung, 1999]

Standard NMF seeks the following decomposition:

 $X_{+} \cong F_{+}G_{+}^{T}, X \in \mathbb{R}^{m \times n}, F \in \mathbb{R}^{m \times k}, G \in \mathbb{R}^{k \times n}$

Example:

Standard NMF

[Lee and Seung, 1999]

Standard NMF seeks the following decomposition:

 $X_{+} \cong F_{+}G_{+}^{T}, X \in \mathbb{R}^{m \times n}, F \in \mathbb{R}^{m \times k}, G \in \mathbb{R}^{k \times n}$

Example:

Standard NMF

[Lee and Seung, 1999]

Standard NMF seeks the following decomposition:

 $X_{+} \cong F_{+}G_{+}^{T}, X \in \mathbb{R}^{m \times n}, F \in \mathbb{R}^{m \times k}, G \in \mathbb{R}^{k \times n}$

Example:

Type:
NMF

$$f = (f_1, f_2, \dots, f_k)$$

 $K = FG^T$
Original $X = (x_1, x_2, \dots, x_n)$
 $f = (x_1, x_2, \dots, x_n)$
 $f = (x_1, x_2, \dots, x_n)$

Apprentissage par factorisation matricielle (EPAT'14 – Carry-Le-Rouet 7-12 juin 2014)

Standard NMF

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

[Lee and Seung, 1999]

Apprentissage par factorisation matricielle (EPAT'14 – Carry-Le-Rouet 7-12 juin 2014)

How to solve NMF?

- Problem is not convex:
 - Local optimum may not correspond to the global optimum
 - Little hope to find the global optimum
- But the problem is bi-convex:
 - For fixed F:

$$f(G) = \left\| X - FG \right\|_F^2$$

is convex.

General framework

- Gradient descent is generally slow
- Stochastic gradient descent is inappropriate
- Key approach: alternating minimization

Pick starting point F_0 and G_0 while not converged do:

- 1. Fix F and optimize G
- 2. Fix G and optimize F end while

du 7 au 17 a

Theorem: The objective function

$$f(F,G) = \left\| X - FG \right\|_{F}^{2} \to \min$$

is non-increasing under the following update rules:

$$F = F \otimes \begin{bmatrix} \frac{\partial f(F,G)}{\partial F} \end{bmatrix}_{+} = F \otimes \frac{XG^{T}}{FGG^{T}}$$
$$G = G \otimes \begin{bmatrix} \frac{\partial f(F,G)}{\partial G} \end{bmatrix}_{+} = G \otimes \frac{F^{T}X}{F^{T}FG}$$

Apprentissage par factorisation matricielle (EPAT'14 – Carry-Le-Rouet 7-12 juin 2014)

Multiplicative update rules example

Apprentissage par factorisation matricielle (EPAT'14 – Carry-Le-Rouet 7-12 juin 2014)

What if we don't want the initial data to be strictly non-negative?

But we still want to add non-negativity constraints on other factors

Semi-NMF [Ding et al., 2006]

Semi-NMF seeks the following factorization:

 $X_{\pm} = F_{\pm}G_{\pm}^{T}$

- Why Semi-NMF?
 - We do not care if our data is non-negative
 - We do not know if basis vectors are non-negative
 - We **DO** want elements of **G** to be non-negative in order to interpret them as clusters assignments

Update rules for Semi-NMF

- Step 0: Initialize **G**
- Step 1: Update **F** using the following expression: $F = XG(G^TG)^{-1}$
- Step 2: Update **G** using the following equation:

$$G = G \sqrt{\frac{\left(X^T F\right)^+ + G(F^T F)^-}{\left(X^T F\right)^- + G(F^T F)^+}}$$

where $A^{\pm} = \frac{\left(|A| \pm A\right)}{2}$.

Convergence guaranties

• Theorem:

The update rules presented above decrease monotonically the objective function and converge to a fixed point that satisfies the Karush-Kuhn-Tucker(KKT) conditions.

Complexity

- Step 1: *t*(*mnk* + *nk*²)
- Step 2: $t(nmk + km^2 + n^2k)$

What if we want our basis vectors to be closer to the initial data?

Convex-NMF(C-NMF) [Ding et al., 2006]

- Convex-NMF seeks the following factorization: $X_{\pm} \cong X_{\pm}W_{\pm}G_{\pm}^{T}, X \in \mathbb{R}^{m \times n}, W \in \mathbb{R}^{n \times k}, G \in \mathbb{R}^{k \times n}$
- Why Convex-NMF?
 - We do not care if initial date is non-negative
 - Basis vectors lie in the vector space of the initial data so that they will capture the notion of centroids
 - Factors W and G are non-negative and tend to be very sparse

Convex-NMF(C-NMF) [Ding et al., 2006]

Update rules for C-NMF

- Step 0: Initialize W and G.
- Step 1: Update G using the following expression:

$$G = G \sqrt{\frac{\left(X^{T}X\right)^{+}W + GW^{T}(X^{T}X)^{-}W}{\left(X^{T}X\right)^{-}W + GW^{T}(X^{T}X)^{+}W}}$$

• Step 2: Update W using the following equation:

$$W = W \sqrt{\frac{\left(X^T X\right)^+ G + (X^T X)^- W G^T G}{\left(X^T X\right)^- G + (X^T X)^+ W G^T G}}$$

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014 C-NMF vs Semi-NMF $X = \begin{pmatrix} 1.3 & 1.8 & 4.8 & 7.1 & 5.0 & 5.2 & 8.0 \\ 1.5 & 6.9 & 3.9 & -5.5 & -8.5 & -3.9 & -5.5 \\ 6.5 & 1.6 & 8.2 & -7.2 & -8.7 & -7.9 & -5.2 \\ 3.8 & 8.3 & 4.7 & 6.4 & 7.5 & 3.2 & 7.4 \\ -7.3 & -1.8 & -2.1 & 2.7 & 6.8 & 4.8 & 6.2 \end{pmatrix},$ $F_{semi} = \begin{pmatrix} 0.05 & 0.27 \\ 0.40 & -0.40 \\ 0.70 & -0.72 \\ 0.30 & 0.08 \\ -0.51 & 0.49 \\ 20.3 & 23.0 \end{pmatrix}, F_{conv} = \begin{pmatrix} 0.31 & 0.53 \\ 0.42 & -0.30 \\ 0.56 & -0.57 \\ 0.49 & 0.41 \\ -0.41 & 0.36 \\ 31.0 & 39.3 \end{pmatrix}$ Cluster 1 Cluster 2 $G_{semi} = \begin{pmatrix} 0.61 & 0.89 & 0.54 & 0.77 & 0.14 & 0.36 & 0.84 \\ 0.12 & 0.53 & 0.11 & 1.03 & 0.60 & 0.77 & 1.16 \end{pmatrix}$ $G_{conv} = \begin{pmatrix} 0.31 & 0.31 & 0.29 & 0.02 & 0 & 0.02 \\ 0 & 0.06 & 0 & 0.31 & 0.27 & 0.30 & 0.36 \end{pmatrix}$

$$||X - FG^T|| = 0.27940, 0.27944, 0.30877$$

Convergence guaranties

• Theorem:

The update rules presented above decrease monotonically the objective function and converge to a fixed point that satisfies the KKT conditions.

Complexity

- Step 1: $n^2m + t(2n^2k + nk^2)$
- Step 2: *t*(2*n*²*k* + 2*nk*²)

What if we want to work with matrices based on similarities between objects but not the objects themselves?

Kernels and Gram matrices

Kernel is a function *k*:

$$k: \mathfrak{X} \times \mathfrak{X} \to \mathfrak{R}, \ (x, x') \to k(x, x')$$

satisfying

$$\forall (x,x') \in \aleph, k(x,x') = \langle \Phi(x), \Phi(x') \rangle$$

where Φ maps into some dot product space H, sometimes called the feature space.

Gram matrix of a kernel function k w.r.t a set of vectors x_1, \ldots, x_n is a matrix

$$K^{n \times n} = \left(k(x_i), k(x_j)\right)_{ij}$$

Kernel functions

- Different similarity measures can be used as a kernel functions. For instance:
 - Linear kernel

$$k(x,x') = x^T x' + c$$

Polynomial kernel

$$k(x,x') = (ax^T x' + c)^d$$

• Gaussian kernel

$$k(x, x') = \exp^{(-\frac{\|x-x'\|^2}{2\sigma^2})}$$

... etc

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014 Kernel NMF(K-NMF) [Zhang, 2006]

 Kernel NMF is a natural extension of C-NMF. It seeks the following decomposition:

$K \cong KW_{+}G_{+}^{T}, K \in \mathbb{R}^{n \times n}, W \in \mathbb{R}^{n \times k}, G \in \mathbb{R}^{k \times n}$

where **K** is a Gram matrix of some arbitrary kernel function k.

- Why K-NMF?
 - Sometimes clustering based on similarities between objects gives better results
 - Some kernels preserve the non-negativity of data
 - Gram matrix can help to work with confidential data

Update rules for K-NMF

Obviously the update rules and convergence quarantines are the same as for C-NMF.

BUT!

Storing and calculating Gram matrices can lead to huge computational efforts.

AND!

We usually do not know how to choose an appropriate kernel function and its parameters beforehand

What if we want to consider data points in a graph model?

Considering a model similar to the Spectral Clustering.

La Calanque, Carry-le-Rouet

Symmetric NMF(Sym-NMF) [Kuang et al.,2012]

• Symmetric NMF seeks the following decomposition: $K \cong G_{+}G_{+}^{*}, K \in \mathbb{R}^{n \times n}, G \in \mathbb{R}^{k \times n}$

where K is a Gram matrix calculated using any arbitrary kernel function with respect to initial data set.

• Why Sym-NMF?

- It can be proved that Sym-NMF works as a spectral clustering method
- It can be used for data which clusters lie on a nonlinear manifold

Update rules for Sym-NMF

• For non-negative **K**, **H** can be updated as follows:

$$H = H \left(0.5 + 0.5 \frac{(KH)}{HH^T H} \right)$$

 Otherwise using Newton-liked method with Hessian estimations

Convergence guaranties

• Theorem:

The update rules presented above decrease monotonically the objective function and converge to a fixed point that satisfies the KKT conditions.

Complexity

• O(n³k) !!!

What if we want to impose additional constraints on our model?

For example orthogonality.

Apprentissage par factorisation matricielle (EPAT'14 – Carry-Le-Rouet 7-12 juin 2014)

Uni-Orthogonal NMF(UONMF) [Ding et al., 2005]

• Uni-Orthogonal NMF takes the following form:

 $X_+ \cong F_+G_+, X \in \mathbb{R}^{m \times n}, F \in \mathbb{R}^{m \times k}, G \in \mathbb{R}^{k \times n} \text{ s.t. } F^T F = I \text{ or } G^T G = I$

• Why UONMF?

- In case of orthogonal constraints imposed on **F** we obtain a dictionary with distinct basis vectors
- In case of orthogonal constraints imposed on G we force our clusters to be as different as possible

Update rules for UONMF

 If constraints are added to the objective function [Mirzal, 2010] the update rules are:
 If we impose orthogonality on G:

$$F = F\left(\frac{XG^{T}}{FGG^{T}}\right) \qquad G = G\left(\frac{F^{T}X + G}{F^{T}FG + GG^{T}G}\right)$$

If solved as a constrained optimization problem:

$$F = F\left(\frac{XG^{T}}{FGG^{T}}\right) \qquad \qquad G = G\left(\frac{F^{T}X}{F^{T}XG^{T}G}\right)$$

Convergence guaranties

- The update rules presented in the original work are derived under assumption that off-diagonal elements of the Lagrangian matrix are equal to zero. Thus, the update rules have a non-increasing property of this assumption is true.
- The update rules from [Mirzal, 2010] have a robust convergence proof.

What if we impose constraints on both factors?

Apprentissage par factorisation matricielle (EPAT'14 – Carry-Le-Rouet 7-12 juin 2014)

Y. Bennani & I. Redko

Bi-Orthogonal NMF [Ding et al., 2005]

Bi-Orthogonal NMF takes the following form:

 $X_{+} \cong F_{+}S_{+}G_{+}, X \in \mathbb{R}^{m \times n}, F \in \mathbb{R}^{m \times k}, S \in \mathbb{R}^{k \times k}, G \in \mathbb{R}^{k \times n}$ s.t. $F^{T}F = I$ and $G^{T}G = I$

- Why BONMF?
 - Can be seen as a co-clustering approach where **F** is a clustering of features and **G** is a clustering of data.
 - Gives unique matrix factorization!!!

Update rules for BONMF

 If constraints are added to the objective function [Mirzal, 2010] the update rules are:

$$F = F\left(\frac{XG^{T}S + F}{FSGG^{T}S^{T} + FF^{T}F}\right) \quad S = S\left(\frac{F^{T}XG^{T}}{F^{T}FSGG^{T}}\right) \quad G = G\left(\frac{S^{T}F^{T}X + G}{S^{T}F^{T}FSG + GG^{T}G}\right)$$

If solved as a constrained optimization problem:

$$F = F\left(\frac{XG^{T}S^{T}}{FF^{T}XG^{T}S^{T}}\right) \qquad S = S\left(\frac{F^{T}XG^{T}}{F^{T}FSGG^{T}}\right) \qquad G = G\left(\frac{S^{T}F^{T}X}{F^{T}S^{T}XG^{T}G}\right)$$

Convergence guaranties

- The update rules presented in the original work are derived under assumption that off-diagonal elements of the Lagrangian matrix are zero. Thus, the update rules have a non-increasing property of this assumption is true.
- The update rules from [Mirzal, 2010] have a robust convergence proof.

Is there another way to impose orthogonality on the set of basis vectors?

Y. Bennani & I. Redko

Projective NMF(PNMF) [Yuan et al., 2007]

• Projective NMF seeks the following decomposition:

$\mathbf{X}_{+} \cong \mathbf{F}_{+}\mathbf{F}_{+}^{T}\mathbf{X}_{+}, \mathbf{X} \in \mathbf{R}^{m \times n}, \mathbf{F} \in \mathbf{R}^{m \times k}$

- Why Projective NMF?
 - Can be useful for dictionary learning
 - Gives very sparse basis vectors that can have good discriminative power.

Projective NMF(PNMF) [Yuan et al., 2007]

 $X_+ \cong F_+F_+^TX_+, X \in \mathbb{R}^{m \times n}, F \in \mathbb{R}^{m \times k}$

Y. Bennani & I. Redko

Update rules for PNMF

• Update **F** using the following expression:

$$F = F\left(\frac{XX^{T}F}{FF^{T}XX^{T}F + XX^{T}FF^{T}F}\right)$$

• Normalize columns of **F**:

$$F = \frac{F}{\max_{i}(\|f_i\|)}$$

What does it mean more sparse?

• The fraction of non-zero elements in a matrix is called **sparsity.**

Apprentissage par factorisation matricielle (EPAT'14 – Carry-Le-Rouet 7-12 juin 2014)

Tri-NMF

 $X \approx F S G^T$

r. Bennani & I. Redk

Tri-NMF

$$[F,S,G] = \arg\min_{F,S,G} D_F(X \| FSG)$$
$$= \arg\min_{F,S,G} \| X - F S G^T \|_F^2$$

sc
$$F \ge 0, S \ge 0, G \ge 0$$
 et $F^T F = I, G^T G = I$

Tri-NMF

$$G_{jk} \leftarrow G_{jk} \sqrt{\frac{\left(X^{T}FS\right)_{jk}}{\left(GG^{T}X^{T}FS\right)_{jk}}}}$$

$$F_{ik} \leftarrow F_{ik} \sqrt{\frac{\left(XGS^{T}\right)_{ik}}{\left(FF^{T}XGS^{T}\right)_{ik}}}}$$

$$S_{ik} \leftarrow S_{ik} \sqrt{\frac{\left(F^{T}XG\right)_{ik}}{\left(F^{T}FSG^{T}G\right)_{ik}}}}$$

Apprentissage par factorisation matricielle (EPAT'14 – Carry-Le-Rouet 7-12 juin 2014)

Tri-NMF vs NMF

Tri-NMF

Tri-NMF vs NMF

What if we want more than three factors?

General model of NMF for *k* different matrices.

Y. Bennani & I. Redko

Eccie de Printer Baur PAR et disconstruitée La Calan Lui, Crry Je-Ro let div aut 2 Juin 214 [Cichocki et al., 2006]

In Multilayer NMF we build up a system that has many layers or cascade connections:

• First of all we perform NMF on the initial data

 $X \cong F_1G_1, X \in \mathbb{R}^{m \times n}, F_1 \in \mathbb{R}^{m \times k}, G_1 \in \mathbb{R}^{k \times n}$

• Then we use matrix **G** for further decompositions

 $\mathbf{G}_{i-1} \cong \mathbf{F}_i \mathbf{G}_i \ \forall \ i = 1 \dots L$

• We stop when some stopping criteria is satisfied. Finally, we obtain the following factorization:

 $X \cong F_1 F_2 \dots F_L G_L.$

Why Multilayer NMF?

- At each level the basis vectors' sparsity is growing
- Better clutering results due to hierarchically learned representations
- Better numerical stability

How to take into account time shifts in data?

For example if we work with audio signals.

Apprentissage par factorisation matricielle (EPAT'14 – Carry-Le-Rouet 7-12 juin 2014)

Y. Bennani & I. Redko

Convolutive NMF(ConvNMF) [O'Grady et Pearlmutter, 2006]

• Convolutive NMF is of the following form:

$$X \cong \sum_{i=1}^{t} F_i \overset{i \to}{G}, X \in \mathbb{R}^{m \times n}, F_i \in \mathbb{R}^{m \times k}, \overset{i \to}{G} \in \mathbb{R}^{k \times n}$$

- Why Convolutive NMF?
 - Processing horizontally shifted versions of the initial matrix allows to discover more efficiently the structure of data whose frequency varies in time.
 - It can be applied to audio signals analysis

Update rules for ConvNMF

• Update **F** using the following expression

$$F = F + \eta_F \left(\frac{X}{\sum_{i=0}^{t} F_i G} \overset{i \to}{G}^T - 1 \overset{i \to}{G}^T \right)$$

- Rescale all the columns of **F** to the unit length
- Update G as follows:

H = H

 F^{T}

What if we want to find a consensus between different views of data?

Liu et al., 2013]

• Multiview NMF has the following objective function:

$$\sum_{\nu=1}^{n_{\nu}} \left\| X^{(\nu)} - F^{(\nu)} G^{(\nu)} \right\|_{F}^{2} + \sum_{\nu=1}^{n_{\nu}} \lambda_{\nu} \left\| G^{(\nu)} - G^{(*)} \right\|_{F}^{2}$$

- Why Multiview NMF?
 - Different views can provide different information about data
 - Consensus technique in the NMF framework

Update rules for Multiview NMF

- For each view do:
 - Update **F** based on the following update rule:

$$F = F \frac{XG + \lambda_{v} \sum_{l=1}^{n} G_{l, \bullet} G_{l, \bullet}^{*}}{FG^{T}G + \sum_{p=1}^{m} G_{p, \bullet} \sum_{l=1}^{n} G_{l, \bullet}^{2}}$$

• Update **G** using the following expression:

$$G = G \frac{X^T F + \lambda_v G^*}{G F^T F + \lambda_v G}$$

• Calculate the consensus matrix **G***:

$$G^* = \frac{\sum_{\nu=1}^{n_{\nu}} \lambda_{\nu} G^{(\nu)} Q^{(\nu)}}{\sum_{\nu=1}^{n_{\nu}} \lambda_{\nu}}, \ Q^{(\nu)} = diag(\sum_{i=1}^{m} F_{i,1}^{(\nu)} \sum_{i=1}^{m} F_{i,2}^{(\nu)} \dots \sum_{i=1}^{m} F_{i,k}^{(\nu)})$$

What are the relationships between NMF and other Machine Learning techniques?

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Kernel NMF

[Kuang et al.,2012]

Simple example

	cl	uster 1	cl	luster 2	2		
	$X = \begin{pmatrix} 1.3 \\ 1.5 \\ 6.5 \\ 3.8 \\ -7.3 \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 7.1 & 5.0 \\ -5.5 & -8.5 \\ -7.2 & -8.7 \\ 6.4 & 7.5 \\ 2.7 & 6.8 \end{array}$	$5.2 \\ 5 -3.9 \\ 7 -7.9 \\ 3.2 \\ 4.8 $	$ \begin{array}{c} 8.0 \\ -5.5 \\ -5.2 \\ 7.4 \\ 6.2 \end{array} $		
$F_{\rm svd} = \begin{pmatrix} -0.41 & 0.50 \\ 0.35 & 0.21 \\ 0.66 & 0.32 \\ -0.28 & 0.72 \\ -0.43 & -0.28 \end{pmatrix}$), $F_{\text{semi}} = \begin{pmatrix} 0.0\\ 0.4\\ 0.7\\ 0.3\\ -0.4 \end{pmatrix}$	$ \begin{array}{ccc} 5 & 0.27 \\ 0 & -0.40 \\ 0 & -0.72 \\ 0 & 0.08 \\ 51 & 0.49 \end{array} \right) ,$	$F_{\text{cnvx}} = \begin{pmatrix} 0.31\\ 0.42\\ 0.56\\ 0.49\\ -0.4 \end{pmatrix}$	$ \begin{pmatrix} 0.53 \\ -0.30 \\ 3 & -0.57 \\ 0 & 0.41 \\ 1 & 0.36 \end{pmatrix} $, C _{Kmean}	$s = \begin{pmatrix} 0.29 \\ 0.45 \\ 0.59 \\ 0.46 \\ -0.41 \end{pmatrix}$	$\begin{array}{c} 0.52 \\ -0.32 \\ -0.60 \\ 0.36 \\ 0.37 \end{array}$
$\ F_{convex} - C_{Kmean}\ F_{semi} - C_{Kmean}\ F_{semi} - C_{Kmean}\ F_{semi}\ F_{semi$	ns =0.08 ns =0.53	$G_{\text{svd}}^{T} = \begin{pmatrix} 0.2\\ 0.5 \end{pmatrix}$ $G_{\text{semi}}^{T} = \begin{pmatrix} 0.2\\ 0.5 \end{pmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 22 &45 \\ 43 & 0.30 \\ \hline 0.54 & 0.77 \\ 0.11 & 1.03 \end{array}$	44 -0.12 7 0.14 8 0.60	$\begin{array}{ccc}46 &\\ 0.01 & 0.3 \\ 0.36 & 0.8 \\ 0.77 & 1.1 \end{array}$	$\binom{52}{31}$
		$G_{cnvx}^T = \left(\right)$	$\begin{array}{ccc} 0.31 & 0.31 \\ 0 & 0.06 \end{array}$	$\begin{array}{ccc} 0.29 & 0.02 \\ 0 & 0.31 \end{array}$	2 0 1 0.27	0 0.0 0.30 0.3	$\binom{2}{6}$
$ X - FG^{T} = 0.27940, 0.27944, 0.30877$ SVD Semi Convex							

Apprentissage par factorisation matricielle (EPAT'14 – Carry-Le-Rouet 7-12 juin 2014)

Y. Bennani & I. Redk

[Ding et al., 2008]

Theorem:

Any (local) maximum likelihood solution of PLSI is a solution of NMF with KL divergence.

Experimental results on different data sets:

Disagreements between NMF and PLSI

	WebAce	CSTR	WebKB	Reuters	Log
A	0.083	0.072	0.239	0.070	0.010
В	0.029	0.025	0.056	0.051	0.010
С	0.022	0.013	0.052	0.040	0.012

All 3 type experiments begin with the same smoothed K-means. (A) Smoothed K-means to NMF. Smoothed K-means to PLSI. (B) Smoothed K-means to PLSI. (C) Smoothed K-means to PLSI to NMF.

NMF vs Spectral Clustering(Normalized Cut)

It can be proved that the formulation of SymNMF can be related as a generalized form of many graph clustering algorithms.

	Spectral clustering	SymNMF		
Objective	$\min_{H^T H = I} \ A - HH^T\ _F^2$	$\min_{H\geq 0} \ A - HH^T\ _F^2$		
Step 1	Obtain the global optimal $H_{n \times k}$ by	Obtain a stationary point solution		
	computing k leading eigenvectors of A	using some minimization algorithm		
Step 2	Normalize each row of H	(no need to normalize H)		
Step 3	Infer clustering assignments from	The largest entry in each row of H		
	the rows of H (e.g. by K-means)	indicates the clustering assignments		

What are the applications of NMF for the real-world tasks?

Text mining

- Topic model: NMF as an alternative to PLSI ([Ding et al., 2008], [Gaussier et al., 2005])
- Document clustering([Xu et al., 2003], [Shahnaz et al., 2006])
- Topic detection and trend analysis, email analysis([Berry et al., 2005], [Keila et al.,2005], [Cao et al.,2008])

Image analysis and computer vision

- Image analysis and computer vision
 - Feature representation, sparse coding ([Lee et al., 99]; [Guillamet et al., 01]; [Hoyer et al., 02]; [Li et al. 01])
 - Video tracking ([Bucak et al., 07])

Social networks

- Social network analysis
 - Community structure and trend detection ([Chi et al., 07]; [Wang et al., 08])
 - Recommendation system ([Zhang et al., 06])

Bioinformatics

- Our goal is to discover hidden structures in biological data
 - Bioinformatics-microarray data analysis ([Brunet et al., 04], [H. Kim and Park, 07])

Apprentissage par factorisation matricielle (EPAT'14 – Carry-Le-Rouet 7-12 juin 2014)

Audio analysis

- The idea is to apply NMF to perform signal decomposition
 - Acoustic signal processing, blind source separating ([Cichocki et al., 04])

Transfer learning (1)

Definition

• Given a source domain D_s and a learning task T_s , a target domain D_T and a target task T_T , transfer learning aims to help improve the learning performance in D_T using knowledge gained from D_s and T_s , where $D_s \neq D_T$ and $T_s \neq T_T$.

Transfer learning (2)

- Unsupervised transfer learning using kernel target alignment optimization ([Redko and Bennani, 2014])
- Unsupervised transfer learning using tri-factorization based on discovering distinct concepts ([Zhuang et al.,2013])
- Unsupervised transfer learning using Multilayer NMF ([Redko and Bennani, 2014])

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

