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Matrix factorizations 

�  What can a matrix represent? 
�  System of  equations 

�  User rating matrix 
�  Image 
�  Matrix structure in graph theory 

�  Adjacent matrix 

�  Distance matrix 
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Some common matrix 
factorizations… 
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Principal Components Analysis 
�  PCA (Principal Components Analysis) 

�  PCA computes the most meaningful basis a noisy, 
garbled data set. The hope is that this new basis will 
filter out the noise and reveal the hidden dynamics.  

Example: 

Y. Bennani & I. Redko Apprentissage par factorisation matricielle (EPAT’14 – Carry-Le-Rouet 7-12 juin 2014) 4 



Singular Value Decomposition 
�  SVD (Singular Value Decomposition) 

�  SVD is based on a theorem which says that a rectangular 
matrix A can be broken down into the product of  three 
matrices A = USVT where UTU = Im, VTV = In; the 
columns of  U are orthonormal eigenvectors of  AAT, the 
columns of  V are orthonormal eigenvectors of  ATA, and 
S is a diagonal matrix containing the square roots of  
eigenvalues from U or V in descending order. 
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Why Nonnegative? 
�  Some datasets are intrinsically non-negative: 

�  Counters (e.g., no. occurrences of each word in a text document)  
�  Intensities (e.g., intensity of each color in an image) 
�  Similarity matrices 

�  Data matrix X has only non-negative values: 
�  Decompositions such as SVD may give a result with negative 

values 
�  Negative values describe the absence of something 
�  They have no natural interpretation 
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Standard NMF  
[Lee and Seung, 1999] 

X+  ≅  F +G+
T ,  X ∈  Rm×n, F ∈  Rm×k, G ∈ Rk×n

 �  Standard NMF seeks the following decomposition: 

    Example: 
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Standard NMF  
[Lee and Seung, 1999] 
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How to solve NMF? 
�  Problem is not convex: 

�  Local optimum may not correspond to the global 
optimum 

�  Little hope to find the global optimum 

�  But the problem is bi-convex: 
�  For fixed F:  

                                  is convex. 

f (G) = X −FG
F

2
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General framework 
�  Gradient descent is generally slow  

�  Stochastic gradient descent is inappropriate 

�  Key approach: alternating minimization 

    Pick starting point F0 and G0 
while not converged do: 

1.  Fix F and optimize G 

2.  Fix G and optimize F 

end while 
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Convergence guaranties 
Theorem: The objective function 

is non-increasing under the following update rules: 

  

f (F,G) = X −FG
F

2
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Multiplicative update rules 
example 

Example (multiplicative updates)

f (l , r) = (1� lr)2 + 0.05(l2 + r

2)

l  l
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[Gemula and Miettinen, 2013] 



 
 

What if  we don’t want the 
initial data to be strictly 

non-negative?  
 
 

But we still want to add non-negativity constraints on other factors 
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Semi-NMF 
[Ding et al., 2006] 

�  Semi-NMF seeks the following factorization: 

�  Why Semi-NMF? 
�  We do not care if  our data is non-negative 
�  We do not know if  basis vectors are non-negative 

�  We DO want elements of  G to be non-negative in 
order to interpret them as clusters assignments 

X± = F±G+
T
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Update rules for Semi-NMF 
�  Step 0: Initialize G 

�  Step 1: Update F using the following expression: 

�  Step 2: Update G using the following equation: 

 

     where                      . 

F = XG(GTG)−1

G =G
XTF( )

+
+G(FTF)−

XTF( )− +G(FTF)+

A± =
( A ± A)
2
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Convergence guaranties 

�  Theorem:  
The update rules presented above decrease 
monotonically the objective function and converge to a 
fixed point that satisfies the Karush-Kuhn-Tucker(KKT) 
conditions.  

�  Complexity  
�  Step 1: t(mnk + nk2)  
�  Step 2: t(nmk + km2 + n2k) 
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What if  we want our basis 
vectors to be closer to the 

initial data? 
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Convex-NMF(C-NMF) 
[Ding et al., 2006] 

�  Convex-NMF seeks the following factorization: 

�  Why Convex-NMF? 
�  We do not care if  initial date is non-negative 
�  Basis vectors lie in the vector space of  the initial data 

so that they will capture the notion of  centroids 
�  Factors W and G are non-negative and tend to be very 

sparse 

X±  ≅  X±W+G+
T ,  X ∈  Rm×n, W  ∈  Rn×k, G ∈ Rk×n
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Convex-NMF(C-NMF) 
[Ding et al., 2006] 
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X± ≈ X±W+G+
TF = XW
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Update rules for C-NMF 
�  Step 0: Initialize W and G.  

�  Step 1: Update G using the following expression: 

 

�  Step 2: Update W using the following equation: 

 

      

G =G
XTX( )

+
W +GWT (XTX)−W

XTX( )
−
W +GWT (XTX)+W

W =W
XTX( )

+
G + (XTX)−WGTG

XTX( )
−
G + (XTX)+WGTG
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C-NMF vs Semi-NMF  
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Cluster 1	
 Cluster 2	




Convergence guaranties 
�  Theorem:  

The update rules presented above decrease 
monotonically the objective function and converge to a 
fixed point that satisfies the KKT conditions.  

�  Complexity  
�  Step 1: n2m + t(2n2k + nk2) 

�  Step 2: t(2n2k + 2nk2) 
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What if  we want to work 
with matrices based on 

similarities between objects 
but not the objects 

themselves? 
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Kernels and Gram matrices 
Kernel is a function k: 
 
satisfying  

 
 

where Ф maps into some dot product space H, 
sometimes called the feature space.  
 

Gram matrix of  a kernel function k w.r.t a set of  vectors 
x1,…, xn is a matrix  
 
 

k :ℵ×ℵ→ℜ, (x, x ')→ k(x, x ')

∀ (x, x ')∈ℵ, k(x, x ') = Φ(x),Φ(x ')

Kn×n = k(xi ),k(x j )( )ij
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Kernel functions 
�  Different similarity measures can be used as a 

kernel functions. For instance: 
�  Linear kernel 

 

�  Polynomial kernel 

 

�  Gaussian kernel  

 

 

… etc 

k(x, x ') = xT x '+ c

k(x, x ') = (axT x '+ c)d

k(x, x ') = exp
(−

x−x ' 2

2σ 2
)
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Kernel NMF(K-NMF) 
[Zhang, 2006] 

�  Kernel NMF is a natural extension of  C-NMF.          
It seeks the following decomposition: 

where K is a Gram matrix of  some arbitrary kernel 
function k. 

�  Why K-NMF? 
�  Sometimes clustering based on similarities between 

objects gives better results 

�  Some kernels preserve the non-negativity of  data 

�  Gram matrix can help to work with confidential data 

K ≅  KW+G+
T ,  K ∈ Rn×n, W ∈ Rn×k, G ∈ Rk×n
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Update rules for K-NMF  

Obviously the update rules and convergence quarantines 
are the same as for C-NMF.  

BUT! 

Storing and calculating Gram matrices can lead to huge 
computational efforts. 

AND! 

We usually do not know how to choose an appropriate 
kernel function and its parameters beforehand 
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What if  we want to consider 
data points in a graph 

model? 
 

Considering a model similar to the Spectral Clustering. 
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Symmetric NMF(Sym-NMF) 
[Kuang et al.,2012] 

�  Symmetric NMF seeks the following decomposition: 

where K is a Gram matrix calculated using any arbitrary 
kernel function with respect to initial data set. 

�  Why Sym-NMF? 
�  It can be proved that Sym-NMF works as a spectral 

clustering method  

�  It can be used for data which clusters lie on a 
nonlinear manifold 

K ≅  G+G+
T ,  K ∈  Rn×n, G ∈ Rk×n
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Update rules for Sym-NMF 
�  For non-negative K, H can be updated as follows: 

�  Otherwise using Newton-liked method with Hessian 
estimations 

H = H 0.5+ 0.5 (KH )
HHTH

!

"
#

$

%
&
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Convergence guaranties 
�  Theorem:  

The update rules presented above decrease 
monotonically the objective function and converge to a 
fixed point that satisfies the KKT conditions.  

�  Complexity  
�  O(n3k) !!! 
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What if  we want to impose 
additional constraints on 

our model?  
 

For example orthogonality. 
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Uni-Orthogonal NMF(UONMF) 
[Ding et al., 2005] 

�  Uni-Orthogonal NMF takes the following form: 

�  Why UONMF? 
�  In case of  orthogonal constraints imposed on F we 

obtain a dictionary with distinct basis vectors 

�  In case of  orthogonal constraints imposed on G we 
force our clusters to be as different as possible 

X+  ≅  F+G+,  X ∈ Rm×n, F ∈ Rm×k,G ∈ Rk×n s.t. FTF = I or GTG = I
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Update rules for UONMF 
�  If  constraints are added to the objective function 

[Mirzal, 2010] the update rules are: 
If  we impose orthogonality on G: 

 
 
 

�  If  solved as a constrained optimization problem: 

F = F XGT

FGGT

!

"
#

$

%
& G =G FTX +G

FTFG +GGTG
!

"
#

$

%
&

F = F XGT

FGGT

!

"
#

$

%
& G =G FTX

FTXGTG
!

"
#

$

%
&
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Convergence guaranties 

�  The update rules presented in the original work are 
derived under assumption that off-diagonal 
elements of  the Lagrangian matrix are equal to 
zero. Thus, the update rules have a non-increasing 
property of  this assumption is true.  

�  The update rules from [Mirzal, 2010] have a robust 
convergence proof. 
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What if  we impose 
constraints on both factors? 
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Bi-Orthogonal NMF 
[Ding et al., 2005] 

�  Bi-Orthogonal NMF takes the following form: 

�  Why BONMF? 
�  Can be seen as a co-clustering approach where F is a 

clustering of  features and G is a clustering of  data. 
�  Gives unique matrix factorization!!! 

X+  ≅  F+S+G+,  X ∈  Rm×n, F  ∈ Rm×k,S∈ Rk×k,G ∈ Rk×n

s.t. FTF = I and GTG = I

Y. Bennani & I. Redko Apprentissage par factorisation matricielle (EPAT’14 – Carry-Le-Rouet 7-12 juin 2014) 39 



Update rules for BONMF 
�  If  constraints are added to the objective function 

[Mirzal, 2010] the update rules are: 
 

 

�  If  solved as a constrained optimization problem: 

F = F XGTS +F
FSGGTST +FFTF
!
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Convergence guaranties 
�  The update rules presented in the original work are 

derived under assumption that off-diagonal 
elements of  the Lagrangian matrix are zero. Thus, 
the update rules have a non-increasing property of  
this assumption is true.  

�  The update rules from [Mirzal, 2010] have a robust 
convergence proof. 
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Is there another way to 
impose orthogonality on the 

set of  basis vectors?  
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Projective NMF(PNMF) 
[Yuan et al., 2007] 

�  Projective NMF seeks the following decomposition: 

�  Why Projective NMF? 
�  Can be useful for dictionary learning 
�  Gives very sparse basis vectors that can have good 

discriminative power. 

X+  ≅  F+F
T
+X+,  X ∈ Rm×n, F ∈ Rm×k
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Projective NMF(PNMF) 
[Yuan et al., 2007] 

X+  ≅  F+F
T
+X+,  X ∈ Rm×n, F ∈ Rm×k
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X X ≈ X F	
 FT	
 X 
(mxn)	
 (mxk)	
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Update rules for PNMF 

�  Update F using the following expression: 

�  Normalize columns of  F: 

F = F XXTF
FFTXXTF + XXTFFTF
!

"
#

$

%
&

F = F
max

i
( fi )
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What does it mean more sparse? 
�  The fraction of  non-zero elements in a matrix is 

called sparsity.  
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Tri-NMF 
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Tri-NMF 
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F,S,G{ } = argmin
F ,S,G

DF X FSG( )
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F ,S,G

X − F S GT

F
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Tri-NMF 

€ 

Gjk← Gjk

XTFS( ) jk
GGT XTFS( ) jk

€ 

Fik← Fik
XGST( )ik

FFT XGST( )ik

€ 

Sik← Sik
FT XG( )ik

FTFSGTG( )ik
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Tri-NMF vs NMF 

X F GT 

X F S GT 
       NMF 

       Tri-NMF 
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Tri-NMF vs NMF 

X 

Cluster 1	
 Cluster 2	
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What if  we want more than 
three factors? 

 
General model of  NMF for k different matrices. 
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Multilayer NMF(MultiNMF) 
[Cichocki et al., 2006] 

In Multilayer NMF we build up a system that has 
many layers or cascade connections: 

�  First of  all we perform NMF on the initial data 

�  Then we use matrix G for further decompositions 

�  We stop when some stopping criteria is satisfied. Finally, 
we obtain the following factorization: 

X ≅  F1G1,  X ∈  Rm×n,  F1 ∈  Rm×k, G1 ∈ Rk×n

Gi−1 ≅ FiGi  ∀ i =1...L

X ≅  F1F2...FLGL.
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Why Multilayer NMF? 

�  At each level the basis vectors’ sparsity is growing 

�  Better clutering results due to hierarchically 
learned representations 

�  Better numerical stability 
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How to take into account 
time shifts in data? 

For example if  we work with audio signals. 
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Convolutive NMF(ConvNMF) 
[O’Grady et Pearlmutter, 2006] 

�  Convolutive NMF is of  the following form: 

�  Why Convolutive NMF? 
�  Processing horizontally shifted versions of  the initial 

matrix allows to discover more efficiently the 
structure of  data whose frequency varies in time. 

�  It can be applied to audio signals analysis 

X ≅  Fi G
i→

i=1

t

∑ ,  X ∈  Rm×n,  Fi ∈  Rm×k, G
i→
∈ Rk×n
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Update rules for ConvNMF 
�  Update F using the following expression 

 

�  Rescale all the columns of  F to the unit length 
�  Update G as follows: 

 

F = F +ηF
X

Fi G
i→
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t

∑
GT
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−1GT
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What if  we want to find a 
consensus between different 

views of  data? 
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Multiview NMF 
[Liu et al., 2013] 

�  Multiview NMF has the following objective function: 

 

�  Why Multiview NMF? 
�  Different views can provide different information 

about data 
�  Consensus technique in the NMF framework 

X (v) −F (v)G(v)

v=1

nv

∑
F

2

+ λv G
(v) −G(∗)

v=1

nv

∑
F

2
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Update rules for Multiview NMF 
�  For each view do: 

�  Update F based on the following update rule: 

 

�  Update G using the following expression: 

 

�  Calculate the consensus matrix G*: 

F = F
XG +λv Gl,•Gl,•

∗

l=1

n

∑

FGTG + Gp,• Gl,•
2
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n
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m
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What are the relationships 
between NMF and other 

Machine Learning techniques? 

NMF K-means family PLSA 
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NMF vs K-means 
NMF 

�  G-orthogonal NMF 

�  Semi-NMF 

�  Convex-NMF  

�  Kernel NMF 

 

�  Orthogonal Symmetric NMF 

Relaxed K-means clustering 

Kernel K-means clustering 

K-means 
[Ding et al.,2006] 

[Kuang et al.,2012] 
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Simple example 
cluster 1 cluster 2 
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NMF vs PLSI 
[Ding et al., 2008]  

Theorem: 

Any (local) maximum likelihood solution of PLSI is a 
solution of NMF with KL divergence. 

Experimental results on different data sets: 

 

 

 

C. Ding et al. / Computational Statistics and Data Analysis 52 (2008) 3913–3927 3921

(a) Purity.

(b) Entropy.

Fig. 1. Performance comparison of NMF and PLSI: I.

Table 2
Disagreements between NMF and PLSI

WebAce CSTR WebKB Reuters Log

A 0.083 0.072 0.239 0.070 0.010
B 0.029 0.025 0.056 0.051 0.010
C 0.022 0.013 0.052 0.040 0.012

All 3 type experiments begin with the same smoothed K-means. (A) Smoothed K-means to NMF. Smoothed K-means to PLSI. (B) Smoothed
K-means to NMF to PLSI. (C) Smoothed K-means to PLSI to NMF.

The computed results, the average of 10 different runs, are listed in line A of Table 2. The results show that the
differences between NMF and PLSI are quite substantial for WebKB (24%), and ranges between 1%–8% in general
cases.

Function JNMF defines a surface in the multi-dimensional space. Because this global objective function is not a
convex function, there are in general a very large number of local minima in the high p-dimensional space. Our
experimental results suggest that starting with same initial smoothed K-means solution, NMF and PLSI converge to
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NMF vs Spectral 
Clustering(Normalized Cut) 

Table 2: Algorithmic steps of spectral clustering and SymNMF clustering
Spectral clustering SymNMF

Objective minHT H=I ⌃A�HHT ⌃2F minH⇤0 ⌃A�HHT ⌃2F

Step 1
Obtain the global optimal Hn⇥k by Obtain a stationary point solution

computing k leading eigenvectors of A using some minimization algorithm
Step 2 Normalize each row of H (no need to normalize H)

Step 3
Infer clustering assignments from The largest entry in each row of H

the rows of H (e.g. by K-means) indicates the clustering assignments

Table 1: Graph clustering objectives and similarity
matrices.

Ratio Objective: max
⇤k

p=1

P
i2Vp,j2Vp

AG
ij

|V |

association Similarity matrix: A = AG

Normalized Objective: max
⇤k

p=1

P
i2Vp,j2Vp

AG
ijP

i2Vp,j2V AG
ij

cut Similarity matrix: A = D�1/2AGD�1/2

Kernel Similarity matrix: A = K

clustering
�
Kij = ⇥(xi)T ⇥(xj)

⇥

objective functions that have been shown e�ective in
graph clustering, as well as the similarity matrices A.
All the cases in Table 1 can be reduced to the follow-
ing trace maximization form, assuming the similarity
matrix A is constructed correspondingly [5, 13]:

(2.5) max trace(HT AH)

where H ⌅ Rn⇥k satisfies some constraints and indicates
the clustering assignment. A group of successful graph
clustering methods – spectral clustering, relax the con-
straints on H to HT H = I. Under such orthogonality
constraint on H, we have [7]:

max trace(HT AH)
⇤ min trace(AT A)� 2trace(HT AH) + trace(I)
⇤ min trace[(A�HHT )T (A�HHT )]
⇤ min ⌃A�HHT ⌃2F
Therefore, compared to spectral clustering, Sym-

NMF can be seen as a di�erent relaxation to min ⌃A�
HHT ⌃2F , i.e. relaxing the constraints on H to be H ⇥ 0.
In addition, we can use the same way of constructing the
similarity matrix A as in Table 1. The choice of the sim-
ilarity matrix A depends on the data set and also will
influence the clustering results. The 1st and 2nd cases in
Table 1 are derived from two di�erent graph cut defini-
tions, where normalized cut often performs better than

ratio association [17]. In the 3rd case, K is a kernel
matrix where ⇥ is a nonlinear mapping of the original
data points. Although it was shown that kernel clus-
tering has equivalent objective functions with weighted
graph clustering [5], similarity values are defined by in-
ner products and no graph is explicitly constructed. In
all of our experiments in this paper, we explicitly con-
struct graphs from the data points; therefore, we choose
normalized cut objective and the corresponding similar-
ity matrix A = D�1/2AGD�1/2. The most suitable way
to form the similarity matrix depends on the underlying
data set, and that is not the focus of this paper. How-
ever, we should keep in mind that we are developing a
framework for graph clustering that can be applied to
a similarity matrix A derived from any graph clustering
objective.

2.3 SymNMF and Spectral Clustering Meth-
ods Due to di�erent constraints on H, spectral clus-
tering and SymNMF have di�erent properties in the
clustering results they generate. Before analyzing their
properties, we first compare their algorithmic steps in
Table 2. Spectral clustering leads to eigenvector-based
solutions of H, which are not necessarily nonnegative;
and K-means or more advanced procedures have to be
adopted in order to obtain the final clustering assign-
ments. In contrast, the solution found by SymNMF nat-
urally captures the cluster structure. It also indicates
the clustering assignments without additional cluster-
ing procedures, which heavily depends on initialization,
such as K-means.

Spectral clustering is a well-established framework
for graph clustering. However, its success relies on the
properties of the leading eigenvalues and eigenvectors
of the similarity matrix A. It was pointed out by Ng
et al. [16], that the k-dimensional subspace spanned
by the leading k eigenvectors of A is stable only when
|�k(A) � �k+1(A)| is su⌅ciently large, where �i(A)
is the i-th largest eigenvalue of A. Now we show
intuitively that the absence of this property will cause

It can be proved that the formulation of  SymNMF can be related as a 
generalized form of  many graph clustering algorithms. 
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What are the applications of  
NMF for the real-world 

tasks? 
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Text mining 

�  Topic model: NMF as an alternative to PLSI ([Ding 
et al., 2008], [Gaussier et al.,2005]) 

�  Document clustering([Xu et al., 2003], [Shahnaz et 
al.,2006]) 

�  Topic detection and trend analysis, email 
analysis([Berry et al., 2005], [Keila et al.,2005], 
[Cao et al.,2008]) 
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Image analysis and computer vision 
�  Image analysis and computer vision 

�  Feature representation, sparse coding ([Lee et al., 
99]; [Guillamet et al., 01]; [Hoyer et al., 02]; [Li et al. 
01]) 

�  Video tracking ([Bucak et al., 07]) 



 
       

  
          
         
             
  




 
   

 
     


           
          
             
 




Y. Bennani & I. Redko Apprentissage par factorisation matricielle (EPAT’14 – Carry-Le-Rouet 7-12 juin 2014) 68 



Social networks 
�  Social network analysis 

�  Community structure and trend detection ([Chi et al., 
07]; [Wang et al., 08]) 

�  Recommendation system ([Zhang et al., 06]) 

F. Wang et al.

correctness and convergence properties of those algorithms are also studied. Finally
the experiments on real world networks are presented to show the effectiveness of the
proposed methods.

Keywords Community discovery · Nonnegative matrix factorization

1 Introduction

Nowadays, complex networks exist in a wide variety of systems in different areas, such
as social networks (Scott 2000; Wasserman and Faust 1994), technological networks
(Amaral et al. 2000; Watts and Strogatz 1998), biological networks (Sharan 2005;
Watts and Strogatz 1998) and information networks (Albert et al. 1999; Faloutsos et
al.). Despite the diverse physical meanings behind those networks, they usually exhibit
common topological properties, such as the small-world phenomenon (Barthelemy
and Amaral 1999) and the power-law degree distribution (Faloutsos et al.). Besides
that, most real world networks demonstrate that the nodes (or units) contained in
their certain parts are densely connected to each other (Palla et al. 2005), which are
usually called clusters or communities (Girvan and Newman 2002). Efficiently iden-
tifying those communities can help us to know the nature of those networks better and
facilitate the analysis on those large networks.

Generally, a network can be represented as a graph, where the graph nodes stand for
the units in the network, and the graph edges denote the unit relationships.
A typical network with 4 inside communities is illustrated in Fig. 1, where nodes
with different colors belong to different communities, and different communities may
share commons units.

During the last decades, many algorithms have been proposed to identify the com-
munities contained in a network. For example, the k-means clustering method, the

Fig. 1 Illustration of a typical network and its inside communities. Nodes with different colors correspond
to different communities, and the numbers on the nodes correspond to their indices

123
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Bioinformatics 
�  Our goal is to discover hidden structures in 

biological data  
�  Bioinformatics-microarray data analysis ([Brunet et 

al., 04], [H. Kim and Park, 07]) 

the genes (rather than the samples) according to the entries of
W. We do not focus on this view here, but it is clearly of great
interest.

NMF provides a natural way to cluster genes and samples,
because it involves factorization into matrices with nonnegative
entries. By contrast, principal component analysis provides a
simple way to reduce dimensionality but requires that the
matrices be orthogonal, which typically requires linear combi-
nation of components with arbitrary signs. NMF is more difficult
algorithmically because of the nonnegativity requirement but
provides a more intuitive decomposition of the data.

NMF Algorithm. Given a positive matrix A of size N ! M and a
desired rank k, the NMF algorithm iteratively computes an
approximation A " WH, where W and H are nonnegative
matrices with respective sizes N ! k and k ! M. The method
starts by randomly initializing matrices W and H, which are
iteratively updated to minimize a divergence functional. The
functional is related to the Poisson likelihood of generating A
from W and H, D # $i,j Ai,jlog(Ai,j!(WH)i,j) % Ai,j & (WH)i,j. At
each step, W and H are updated by using the coupled divergence
equations (10):

Hau 4 Hau

"
i

WiaAiu!'WH(iu

"
k

Wka

Wia 4 Wia

"
u

HauAiu!'WH(iu

"
v

Hav

A simpler version of the NMF update equations that minimizes
the norm of the residual ##A-WH##2 has also been derived in ref.
10. When applying the method to a medulloblastoma dataset

(see Results), where we knew the underlying substructure, we
observed that the divergence-based update equations were able
to capture a subclass that the norm-based update equations did
not. This is why our implementation of NMF uses the divergence
form (see Data Sets and software).

Model Selection. For any rank k, the NMF algorithm groups the
samples into clusters. The key issue is to tell whether a given rank
k decomposes the samples into ‘‘meaningful’’ clusters. For this
purpose, we developed an approach to model selection that
exploits the stochastic nature of the NMF algorithm. It is
based on our group’s previous work on consensus clustering
(11) but adds a quantitative evaluation for robustness of the
decomposition.

The NMF algorithm may or may not converge to the same
solution on each run, depending on the random initial condi-
tions. If a clustering into k classes is strong, we would expect that
sample assignment to clusters would vary little from run to run.
(Note that sample assignment depends only on the relative
values in each column of H.)

For each run, the sample assignment can be defined by a
connectivity matrix C of size M ! M, with entry cij # 1 if samples
i and j belong to the same cluster, and cij # 0 if they belong to
different clusters. We can then compute the consensus matrix, C! ,
defined as the average connectivity matrix over many clustering
runs. (We select the number of runs by continuing until C!
appears to stabilize; we typically find that 20–100 runs suffice in
the applications below.) The entries of C! range from 0 to 1 and
reflect the probability that samples i and j cluster together. If a
clustering is stable, we would expect that C will tend not to vary
among runs, and that the entries of C! will be close to 0 or 1. The
dispersion between 0 and 1 thus measures the reproducibility of
the class assignments with respect to random initial conditions.
By using the off-diagonal entries of C! as a measure of similarity
among samples, we can use average linkage HC to reorder the
samples and thus the rows and columns of C! .

We then evaluate the stability of clustering associated with a
given rank k. Although visual inspection of the reordered matrix
C! can provide substantial insight (see Fig. 3), it is important to
have quantitative measure of stability for each value of k. We
propose a measure based on the cophenetic correlation coeffi-
cient, !k(C! ), which indicates the dispersion of the consensus
matrix C! . !k is computed as the Pearson correlation of two
distance matrices: the first, I-C! , is the distance between samples
induced by the consensus matrix, and the second is the distance
between samples induced by the linkage used in the reordering
of C! . In a perfect consensus matrix (all entries # 0 or 1), the
cophenetic correlation coefficient equals 1. When the entries are
scattered between 0 and 1, the cophenetic correlation coefficient
is )1. We observe how !k changes as k increases. We select
values of k where the magnitude of the cophenetic correlation
coefficient begins to fall (see below).

Results
We illustrate the use of NMF and our model selection criteria
with three problems in elucidating cancer subtypes. The first
involves acute leukemia, the second medulloblastoma, and the
third a collection of central nervous system tumors.

Leukemia Data Set. The distinction between acute myelogenous
leukemia (AML) and acute lymphoblastic leukemia (ALL), as
well as the division of ALL into T and B cell subtypes, is well
known. In an early gene expression analysis of cancer (5), we
explored how SOM could rediscover these distinctions in a data
set of 38 bone marrow samples (12). Here, we reuse this data set
to compare various clustering methods with respect to their
efficacy and stability in recovering these three subtypes and their
hierarchy. We note that this data set has become a benchmark

Fig. 1. A rank-2 reduction of a DNA microarray of N genes and M samples is
obtained by NMF, A " WH. For better visibility, H and W are shown with
exaggerated width compared with original data in A, and a white line
separates the two columns of W. Metagene expression levels (rows of H) are
color coded by using a heat color map, from dark blue (minimum) to dark red
(maximum). The same data are shown as continuous profiles below. The
relative amplitudes of the two metagenes determine two classes of samples,
class 1 and class 2. Here, samples have been ordered to better expose the class
distinction.

Brunet et al. PNAS # March 23, 2004 # vol. 101 # no. 12 # 4165
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Audio analysis 
�  The idea is to apply NMF to perform signal 

decomposition 
�  Acoustic signal processing, blind source separating 

([Cichocki et al., 04]) 
 

[Sapiro et al., 2012] 



Transfer learning (1) 
Definition 

�  Given a source domain DS and a learning task TS, a 
target domain DT and a target task TT, transfer learning 
aims to help improve the learning performance in DT 
using knowledge gained from DS and TS, where DS ≠ DT 
and TS ≠ TT.  

 

What is Transfer Learning? 
 
!  Transfer learning 

"  Given a source domain DS and a learning task TS, a target domain DT and a target task TT, 
transfer learning aims to help improve the learning performance in DT using knowledge 
gained from DS and TS, where DS ! DT and TS ! TT. 

!  Subspace paradigm 

"  Simultaneously cluster the data into multiple subspaces to find a lower-dimensional 
subspace fitting each group of points. 

 

Source domain! Target domain!?!
Transfer Learning!

2 RS-NMF for unsupervised transfer learning I. Redko & Y. Bennani 



Transfer learning (2) 

�  Unsupervised transfer learning using kernel target alignment 
optimization ([Redko and Bennani, 2014]) 

�  Unsupervised transfer learning using tri-factorization based 
on discovering distinct concepts ([Zhuang et al.,2013]) 

�  Unsupervised transfer learning using Multilayer NMF ([Redko 
and Bennani, 2014]) 

Y. Bennani & I. Redko Apprentissage par factorisation matricielle (EPAT’14 – Carry-Le-Rouet 7-12 juin 2014) 73 



Feel free to ask 
questions if  you 

have any. 
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