KARPAT

Apprentissage par factorisation matricielle

Younès BENNANI et levgen REDKO
LIPN, Université Paris 13 - Sorbonne Paris Cité

EPAT'14 - Carry-Le-Rouet 7-12 juin 2014

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Matrix factorizations

- What can a matrix represent?
- System of equations
- User rating matrix
- Image
- Matrix structure in graph theory
- Adjacent matrix
- Distance matrix
du 7 au 12 Juin 2014

Some common matrix factorizations...

Principal Components Analysis

- PCA (Principal Components Analysis)
- PCA computes the most meaningful basis a noisy, garbled data set. The hope is that this new basis will filter out the noise and reveal the hidden dynamics.
Example:

La Calanque, Carry-le-Rouet
du 7 au 12 Juin 2014

Singular Value Decomposition

- SVD (Singular Value Decomposition)
- SVD is based on a theorem which says that a rectangular matrix A can be broken down into the product of three matrices $\mathbf{A}=\mathbf{U S V}{ }^{\top}$ where $\mathbf{U}^{\top} \mathbf{U}=\mathbf{I}_{\mathbf{m}}, \mathbf{V}^{\top} \mathbf{V}=\mathbf{I}_{\mathbf{n}}$; the columns of \mathbf{U} are orthonormal eigenvectors of $\mathbf{A A}^{\boldsymbol{\top}}$, the columns of \mathbf{V} are orthonormal eigenvectors of $\mathbf{A}^{\boldsymbol{\top}} \mathbf{A}$, and \mathbf{S} is a diagonal matrix containing the square roots of eigenvalues from \mathbf{U} or \mathbf{V} in descending order.

Example:

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 2 / \sqrt{6} & 1 / \sqrt{3} \\
1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{3} \\
1 / \sqrt{2} & 1 / \sqrt{6} & -1 / \sqrt{3}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \sqrt{3} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Why Nonnegative?

- Some datasets are intrinsically non-negative:
- Counters (e.g., no. occurrences of each word in a text document)
- Intensities (e.g., intensity of each color in an image)
- Similarity matrices
- Data matrix X has only non-negative values:
- Decompositions such as SVD may give a result with negative values
- Negative values describe the absence of something
- They have no natural interpretation

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Standard NMF
 [Lee and Seung, 1999]

- Standard NMF seeks the following decomposition:

$$
\mathrm{X}_{+} \cong \mathrm{F}_{+} \mathrm{G}_{+}^{T}, \mathrm{X} \in \mathrm{R}^{m \times n}, \mathrm{~F} \in \mathrm{R}^{m \times k}, \mathrm{G} \in \mathrm{R}^{k \times n}
$$

Example:

(mxn)

(mxk)

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Standard NMF

[Lee and Seung, 1999]

- Standard NMF seeks the following decomposition:

$$
\mathrm{X}_{+} \cong \mathrm{F}_{+} \mathrm{G}_{+}^{T}, \mathrm{X} \in \mathrm{R}^{m \times n}, \mathrm{~F} \in \mathrm{R}^{m \times k}, \mathrm{G} \in \mathrm{R}^{k \times n}
$$

Example:
$\left(\begin{array}{lllllll}0.185 & 0.326 & 0.761 & 2.799 & 2.375 & 2.970 & 2.585 \\ 0.508 & 0.380 & 0.884 & 2.134 & 2.374 & 2.342 & 2.524 \\ 0.452 & 0.887 & 0.457 & 2.065 & 2.484 & 2.253 & 2.163 \\ 1.486 & 1.843 & 1.858 & 0.566 & 0.103 & 0.417 & 0.269 \\ 1.496 & 1.806 & 1.610 & 0.612 & 0.158 & 0.560 & 0.784\end{array}\right) \approx\left(\begin{array}{cccccccccccccc}0.0403 & 0.3695 \\ 0.0889 & 0.3149 \\ 0.1033 & 0.2945 \\ 0.3882 & 0.0002 \\ 0.3794 & 0.0210 \\ 16.83 & 30.64\end{array}\right) \times\left(\begin{array}{lllllll}0.234 & 0.287 & 0.259 & 0.080 & 0.012 & 0.063 & 0.065 \\ 0.006 & 0.014 & 0.040 & 0.223 & 0.238 & 0.244 & 0.236\end{array}\right)$

Standard NMF

[Lee and Seung, 1999]

- Standard NMF seeks the following decomposition:

$$
\mathrm{X}_{+} \cong \mathrm{F}_{+} \mathrm{G}_{+}^{T}, \mathrm{X} \in \mathrm{R}^{m \times n}, \mathrm{~F} \in \mathrm{R}^{m \times k}, \mathrm{G} \in \mathrm{R}^{k \times n}
$$

Example:

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Standard NMF

[Lee and Seung, 1999]

La Calanque, Carry-le-Rouet
du 7 au 12 Juin 2014

How to solve NMF?

- Problem is not convex:
- Local optimum may not correspond to the global optimum
- Little hope to find the global optimum
- But the problem is bi-convex:
- For fixed F:

$$
f(G)=\|X-F G\|_{F}^{2}
$$

is convex.

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

General framework

- Gradient descent is generally slow
- Stochastic gradient descent is inappropriate
- Key approach: alternating minimization

Pick starting point F_{0} and G_{0} while not converged do:

1. Fix F and optimize G
2. Fix G and optimize F end while

La Calanque, Carry-le-Rouet

du 7 au 12 2014
 Convergence guaranties

Theorem: The objective function

$$
f(F, G)=\|X-F G\|_{F}^{2} \rightarrow \min
$$

is non-increasing under the following update rules:

$$
\begin{aligned}
& F=F \otimes\left[\frac{\partial f(F, G)}{\partial F}\right]_{-}^{\left[\frac{\partial f(F, G)}{\partial F}\right]_{+}}=F \otimes \frac{X G^{T}}{F G G^{T}} \\
& G=G \otimes\left[\frac{\left.\frac{\partial f(F, G)}{\partial G}\right]_{-}}{\left[\frac{\partial f(F, G)}{\partial G}\right]_{+}=G \otimes \frac{F^{T} X}{F^{T} F G}}\right.
\end{aligned}
$$

La Calanque, Carry-le-Rouet du 7 au 12 Juin 201

Multiplicative update rules example

du 7 au 12 Juin 2014

What if we don't want the initial data to be strictly non-negative?

But we still want to add non-negativity constraints on other factors

KARPAT

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Semi-NMF [Ding et al., 2006]

- Semi-NMF seeks the following factorization:

$$
X_{ \pm}=F_{ \pm} G_{+}^{T}
$$

- Why Semi-NMF?
- We do not care if our data is non-negative
- We do not know if basis vectors are non-negative
- We DO want elements of \mathbf{G} to be non-negative in order to interpret them as clusters assignments

Update rules for Semi-NMF

- Step 0: Initialize G
- Step 1: Update \mathbf{F} using the following expression:

$$
F=X G\left(G^{T} G\right)^{-1}
$$

- Step 2: Update G using the following equation:

$$
G=G \sqrt{\frac{\left(X^{T} F\right)^{+}+G\left(F^{T} F\right)^{-}}{\left(X^{T} F\right)^{-}+G\left(F^{T} F\right)^{+}}}
$$

where $A^{ \pm}=\frac{(|A| \pm A)}{2}$.

Convergence guaranties

- Theorem:

The update rules presented above decrease monotonically the objective function and converge to a fixed point that satisfies the Karush-Kuhn-Tucker(KKT) conditions.

- Complexity
- Step 1: t(mnk+nk²)
- Step 2: t(nmk $\left.+k m^{2}+n^{2} k\right)$
du 7 au 12 Juin 2014

What if we want our basis vectors to be closer to the initial data?

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Convex-NMF(C-NMF) [Ding et al., 2006]

- Convex-NMF seeks the following factorization:

$$
\mathrm{X}_{ \pm} \cong \mathrm{X}_{ \pm} \mathrm{W}_{+} \mathrm{G}_{+}^{T}, \mathrm{X} \in \mathrm{R}^{m \times n}, W \in \mathrm{R}^{n \times k}, \mathrm{G} \in \mathrm{R}^{l \times n}
$$

- Why Convex-NMF?
- We do not care if initial date is non-negative
- Basis vectors lie in the vector space of the initial data so that they will capture the notion of centroids
- Factors \mathbf{W} and \mathbf{G} are non-negative and tend to be very sparse

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Convex-NMF(C-NMF) [Ding et al., 2006]

$F=X W$	$X_{ \pm} \approx X_{ \pm} W_{+} G_{+}^{T}$
(mxn)	(mxn)

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Update rules for C-NMF

- Step 0: Initialize W and G.
- Step 1: Update G using the following expression:

$$
G=G \sqrt{\frac{\left(X^{T} X\right)^{+} W+G W^{T}\left(X^{T} X\right)^{-} W}{\left(X^{T} X\right)^{-} W+G W^{T}\left(X^{T} X\right)^{+} W}}
$$

- Step 2: Update W using the following equation:

$$
W=W \sqrt{\frac{\left(X^{T} X\right)^{+} G+\left(X^{T} X\right)^{-} W G^{T} G}{\left(X^{T} X\right)^{-} G+\left(X^{T} X\right)^{+} W G^{T} G}}
$$

La Calanque, Carry-le-Rouet
du 7 au 12 Juin 2014

C-NMF vs Semi-NMF

$$
\begin{aligned}
& \text { Cluster } 1 \quad \text { Cluster } 2 \\
& G_{\text {semi }}=\left(\begin{array}{ccccccc}
0.61 & 0.89 & 0.54 & 0.77 & 0.14 & 0.36 & 0.84 \\
0.12 & 0.53 & 0.11 & 1.03 & 0.60 & 0.77 & 1.16
\end{array}\right) \\
& G_{\text {conv }}=\left(\begin{array}{ccccccc}
0.31 & 0.31 & 0.29 & 0.02 & 0 & 0 & 0.02 \\
0 & 0.06 & 0 & 0.31 & 0.27 & 0.30 & 0.36
\end{array}\right)
\end{aligned}
$$

$$
\left\|X-F G^{T}\right\|=0.27940,0.27944,0.30877
$$

Convergence guaranties

- Theorem:

The update rules presented above decrease monotonically the objective function and converge to a fixed point that satisfies the KKT conditions.

- Complexity
- Step 1: $n^{2} m+t\left(2 n^{2} k+n k^{2}\right)$
- Step 2: t(2n²k+2nk2)

What if we want to work with matrices based on similarities between objects but not the objects themselves?

La Calanque, Carry-le-Rouet
du 7 au 12 Juin 2014

Kernels and Gram matrices

Kernel is a function k :

$$
k: \aleph \times \aleph \rightarrow \Re,\left(x, x^{\prime}\right) \rightarrow k\left(x, x^{\prime}\right)
$$

satisfying

$$
\forall\left(x, x^{\prime}\right) \in \aleph, k\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle
$$

where Φ maps into some dot product space H, sometimes called the feature space.

Gram matrix of a kernel function k w.r.t a set of vectors x_{1}, \ldots, x_{n} is a matrix

$$
K^{n \times n}=\left(k\left(x_{i}\right), k\left(x_{j}\right)\right)_{i j}
$$

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Kernel functions

- Different similarity measures can be used as a kernel functions. For instance:
- Linear kernel

$$
k\left(x, x^{\prime}\right)=x^{T} x^{\prime}+c
$$

- Polynomial kernel

$$
k\left(x, x^{\prime}\right)=\left(a x^{T} x^{\prime}+c\right)^{d}
$$

- Gaussian kernel

$$
k\left(x, x^{\prime}\right)=\exp ^{\left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)}
$$

... etc

Kernel NMF(K-NMF)

[Zhang, 2006]

- Kernel NMF is a natural extension of C-NMF. It seeks the following decomposition:

$$
\mathrm{K} \cong \mathrm{KW}_{+} \mathrm{G}_{+}^{T}, \mathrm{~K} \in \mathrm{R}^{n \times n}, W \in \mathrm{R}^{n \times k}, \mathrm{G} \in \mathrm{R}^{k \times n}
$$

where \mathbf{K} is a Gram matrix of some arbitrary kernel function k.

- Why K-NMF?
- Sometimes clustering based on similarities between objects gives better results
- Some kernels preserve the non-negativity of data
- Gram matrix can help to work with confidential data

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Update rules for K-NMF

Obviously the update rules and convergence quarantines are the same as for C-NMF.

BUT!

Storing and calculating Gram matrices can lead to huge computational efforts.

AND!

We usually do not know how to choose an appropriate kernel function and its parameters beforehand
du 7 au 12 Juin 2014

What if we want to consider data points in a graph model?

Considering a model similar to the Spectral Clustering.

La Calanque, Carry-le-Rouet
Symmetric NMF (Sym-NMF) [Kuang et al.,2012]

where K is a Gram matrix calculated using any arbitrary kernel function with respect to initial data set.

- Why Sym-NMF?
- It can be proved that Sym-NMF works as a spectral clustering method
- It can be used for data which clusters lie on a nonlinear manifold

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Update rules for Sym-NMF

- For non-negative \mathbf{K}, \mathbf{H} can be updated as follows:

$$
H=H\left(0.5+0.5 \frac{(K H)}{H H^{T} H}\right)
$$

- Otherwise using Newton-liked method with Hessian estimations

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Convergence guaranties

- Theorem:

The update rules presented above decrease monotonically the objective function and converge to a fixed point that satisfies the KKT conditions.

- Complexity
- $O\left(n^{3} k\right)!!!$

La Calanque, Carry-le-Rouet
du 7 au 12 Juin 2014

What if we want to impose additional constraints on our model?

For example orthogonality.

La Calanque, Carry-le-Rouet
du 7 au 12 Juin 2014

Uni-Orthogonal NMF(UONMF) [Ding et al., 2005]

- Uni-Orthogonal NMF takes the following form: $\mathrm{X}_{+} \cong \mathrm{F}_{+} \mathrm{G}_{+}, \mathrm{X} \in \mathrm{R}^{m \times n}, \mathrm{~F} \in \mathrm{R}^{m \times k}, \mathrm{G} \in \mathrm{R}^{k \times n}$ s.t. $F^{T} F=I$ or $G^{T} G=I$
- Why UONMF?
- In case of orthogonal constraints imposed on \mathbf{F} we obtain a dictionary with distinct basis vectors
- In case of orthogonal constraints imposed on G we force our clusters to be as different as possible

La Calanque, Carry-le-Rouet
du 7 au 12 Juin 2014

Update rules for UONMF

- If constraints are added to the objective function [Mirzal, 2010] the update rules are:
If we impose orthogonality on G :

$$
F=F\left(\frac{X G^{T}}{F G G^{T}}\right) \quad G=G\left(\frac{F^{T} X+G}{F^{T} F G+G G^{T} G}\right)
$$

- If solved as a constrained optimization problem:

$$
F=F\left(\frac{X G^{T}}{F G G^{T}}\right) \quad G=G\left(\frac{F^{T} X}{F^{T} X G^{T} G}\right)
$$

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Convergence guaranties

- The update rules presented in the original work are derived under assumption that off-diagonal elements of the Lagrangian matrix are equal to zero. Thus, the update rules have a non-increasing property of this assumption is true.
- The update rules from [Mirzal, 2010] have a robust convergence proof.
du 7 au 12 Juin 2014

What if we impose constraints on both factors?

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Bi-Orthogonal NMF [Ding et al., 2005]

- Bi-Orthogonal NMF takes the following form:

$$
\begin{gathered}
\mathrm{X}_{+} \cong \mathrm{F}_{+} S_{+} \mathrm{G}_{+}, \mathrm{X} \in \mathrm{R}^{m \times n}, F \in \mathrm{R}^{m \times k}, \mathrm{~S} \in \mathrm{R}^{k \times k}, \mathrm{G} \in \mathrm{R}^{k \times n} \\
\text { s.t. } F^{T} F=I \text { and } G^{T} G=I
\end{gathered}
$$

- Why BONMF?
- Can be seen as a co-clustering approach where \mathbf{F} is a clustering of features and \mathbf{G} is a clustering of data.
- Gives unique matrix factorization!!!

La Calanque, Carry-le-Rouet

du 7 au 12 Juin 2014
 Update rules for BONMF

- If constraints are added to the objective function [Mirzal, 2010] the update rules are:

$$
F=F\left(\frac{X G^{T} S+F}{F S G G^{T} S^{T}+F F^{T} F}\right) \quad S=S\left(\frac{F^{T} X G^{T}}{F^{T} F S G G^{T}}\right) \quad G=G\left(\frac{S^{T} F^{T} X+G}{S^{T} F^{T} F S G+G G^{T} G}\right)
$$

If solved as a constrained optimization problem:

$$
F=F\left(\frac{X G^{T} S^{T}}{F F^{T} X G^{T} S^{T}}\right)
$$

$$
S=S\left(\frac{F^{T} X G^{T}}{F^{T} F S G G^{T}}\right)
$$

$$
G=G\left(\frac{S^{T} F^{T} X}{F^{T} S^{T} X G^{T} G}\right)
$$

Convergence guaranties

- The update rules presented in the original work are derived under assumption that off-diagonal elements of the Lagrangian matrix are zero. Thus, the update rules have a non-increasing property of this assumption is true.
- The update rules from [Mirzal, 2010] have a robust convergence proof.

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Is there another way to impose orthogonality on the set of basis vectors?

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Projective NMF(PNMF) [Yuan et al., 2007]

- Projective NMF seeks the following decomposition:

$$
\mathrm{X}_{+} \cong \mathrm{F}_{+} \mathrm{F}_{+}^{T} \mathrm{X}_{+}, \mathrm{X} \in \mathrm{R}^{m \times n}, \mathrm{~F} \in \mathrm{R}^{m \times k}
$$

- Why Projective NMF?
- Can be useful for dictionary learning
- Gives very sparse basis vectors that can have good discriminative power.

La Calanque, Carry-le-Rouet
du 7 au 12 Juin 2014

Projective NMF(PNMF) [Yuan et al., 2007]

$$
\mathrm{X}_{+} \cong \mathrm{F}_{+} \mathrm{F}_{+}^{T} \mathrm{X}_{+}, \mathrm{X} \in \mathrm{R}^{m \times n}, \mathrm{~F} \in \mathrm{R}^{m \times k}
$$

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Update rules for PNMF

- Update F using the following expression:

$$
F=F\left(\frac{X X^{T} F}{F F^{T} X X^{T} F+X X^{T} F F^{T} F}\right)
$$

- Normalize columns of F:

$$
F=\frac{F}{\max _{i}\left(\left\|f_{i}\right\|\right)}
$$

La Calanque, Carry-le-Rouet
du 7 au 12 Juin 2014
What does it mean more sparse?

- The fraction of non-zero elements in a matrix is called sparsity.

Apprentissage par factorisation matricielle (EPAT'14 - Carry-Le-Rouet 7.12 juin 2014)

Y. Bennani \& I. Redko

46

KARAT

du 7 au 12 Juin 2014

Tri-NMF

$X \approx F S G^{T}$

Tri-NMF

$$
\left\{\begin{aligned}
&\{F, S, G\}=\underset{F, S, G}{\arg \min _{F}}(X \| F S G) \\
&=\underset{F, S, G}{\arg \min _{l}\left\|X-F S G^{T}\right\|_{F}^{2}} \\
& \text { s.c } \quad F \geq 0, S \geq 0, G \geq 0 \quad \text { et } \quad F^{T} F=I, G^{T} G=I
\end{aligned}\right.
$$

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Tri-NMF

$$
\begin{aligned}
& G_{j k} \leftarrow G_{j k} \sqrt{\frac{\left(X^{T} F S\right)_{j k}}{\left(G G^{T} X^{T} F S\right)_{j k}}} \\
& F_{i k} \leftarrow F_{i k} \sqrt{\frac{\left(X G S^{T}\right)_{i k}}{\left(F F^{T} X G S^{T}\right)_{i k}}} \\
& S_{i k} \leftarrow S_{i k} \sqrt{\frac{\left(F^{T} X G\right)_{i k}}{\left(F^{T} F S G^{T} G\right)_{i k}}}
\end{aligned}
$$

du 7 au 12 Juin 2014

Tri-NMF vs NMF

X

G^{\top}

NMF

G^{\top}

Tri-NMF

Tri-NMF vs NMF

$$
\begin{aligned}
& F_{\text {nmf }}=\left(\begin{array}{ll}
0.0403 & 0.3695 \\
0.0889 & 0.3149 \\
0.1033 & 0.2945 \\
0.3882 & 0.0002 \\
0.3794 & 0.0210
\end{array}\right), F_{\text {Tri }}=\left(\begin{array}{ll}
0.0000 & 0.3704 \\
0.0215 & 0.3228 \\
0.0320 & 0.3068 \\
16.83 & 30.64
\end{array}\right) \quad\left(\begin{array}{ll}
0.4773 & 0.0000 \\
0.4692 & 0.0000 \\
2.6172 & 3.4036
\end{array}\right) \quad\left(\begin{array}{lllllll}
0.234 & 0.287 & 0.259 & 0.080 & 0.012 & 0.063 & 0.065 \\
0.006 & 0.014 & 0.040 & 0.223 & 0.238 & 0.244 & 0.236
\end{array}\right) \\
& G_{n m f}= \\
& G_{\text {Tri }}= \\
& S_{\text {Tri-factor }}=\left(\begin{array}{lllllll}
4.3626 & 1.0136 \\
1.4824 & 8.4000
\end{array}\right) \quad\left(\begin{array}{lllllll}
0.270 & 0.335 & 0.333 & 0.034 & 0.000 & 0.009 & 0.020 \\
0.000 & 0.000 & 0.000 & 0.239 & 0.248 & 0.264 & 0.250
\end{array}\right)
\end{aligned}
$$

La Calanque, Carry-le-Rouet
du 7 au 12 Juin 2014

What if we want more than three factors?

General model of NMF for k different matrices.

边EPAT:
 - Awiltilayer NMF(MultiNMF)

 [Cichocki et al., 2006]In Multilayer NMF we build up a system that has many layers or cascade connections:

- First of all we perform NMF on the initial data

$$
\mathrm{X} \cong \mathrm{~F}_{1} \mathrm{G}_{1}, \mathrm{X} \in \mathrm{R}^{m \times n}, \mathrm{~F}_{1} \in \mathrm{R}^{m \times k}, \mathrm{G}_{1} \in \mathrm{R}^{k \times n}
$$

- Then we use matrix \mathbf{G} for further decompositions

$$
\mathrm{G}_{i-1} \cong \mathrm{~F}_{i} \mathrm{G}_{i} \forall i=1 \ldots L
$$

- We stop when some stopping criteria is satisfied. Finally, we obtain the following factorization:

$$
\mathrm{X} \cong \mathrm{~F}_{1} \mathrm{~F}_{2} \ldots \mathrm{~F}_{L} \mathrm{G}_{L} .
$$

La Calanque, Carry-le-Roue du 7 au 12 Juin 2014

Why Multilayer NMF?

- At each level the basis vectors' sparsity is growing
- Better clutering results due to hierarchically learned representations
- Better numerical stability du 7 au 12 Juin 2014

How to take into account time shifts in data?

For example if we work with audio signals.

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Convolutive NMF(ConvNMF) [O'Grady et Pearlmutter, 2006]

- Convolutive NMF is of the following form:

$$
\mathrm{X} \cong \sum_{i=1}^{t} \mathrm{~F}_{i} \stackrel{i}{\mathrm{G}}, \mathrm{X} \in \mathrm{R}^{m \times n}, \mathrm{~F}_{i} \in \mathrm{R}^{m \times k}, \stackrel{i}{\mathrm{G}} \in \mathrm{R}^{k \times n}
$$

- Why Convolutive NMF?
- Processing horizontally shifted versions of the initial matrix allows to discover more efficiently the structure of data whose frequency varies in time.
- It can be applied to audio signals analysis

La Calanque, Carry-le-Rouet
du 7 au 12 Juin 2014

Update rules for ConvNMF

- Update F using the following expression

$$
F=F+\eta_{F}\left(\frac{X}{\sum_{i=0}^{t} F_{i} \stackrel{i \rightarrow}{G}} G^{T}-1 G^{T}\right)
$$

- Rescale all the columns of \mathbf{F} to the unit length
- Update G as follows:

La Calanque, Carry-le-Rouet
du 7 au 12 Juin 2014

What if we want to find a consensus between different views of data?

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Multiview NMF [Liu et al., 2013]

- Multiview NMF has the following objective function:

$$
\sum_{v=1}^{n_{v}}\left\|X^{(v)}-F^{(v)} G^{(v)}\right\|_{F}^{2}+\sum_{v=1}^{n_{v}} \lambda_{v}\left\|G^{(v)}-G^{(v)}\right\|_{F}^{2}
$$

- Why Multiview NMF?
- Different views can provide different information about data
- Consensus technique in the NMF framework

La Calanque, Carry-le-Rouet
du 7 au 12 Juin 2014

Update rules for Multiview NMF

- For each view do:
- Update F based on the following update rule:

$$
F=F \frac{X G+\lambda_{v} \sum_{l=1}^{n} G_{l, \bullet} G_{l, \bullet}^{*}}{F G^{T} G+\sum_{p=1}^{m} G_{p, \bullet} \sum_{l=1}^{n} G_{l}^{2}}
$$

- Update \mathbf{G} using the following expression:

$$
G=G \frac{X^{T} F+\lambda_{v} G^{*}}{G F^{T} F+\lambda_{v} G}
$$

- Calculate the consensus matrix \mathbf{G}^{*} :

What are the relationships between NMF and other Machine Learning techniques?

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

NMF vs K-means

NMF

K-means

[Ding et al.,2006]

- G-orthogonal NMF
- Semi-NMF
- Convex-NMF
- Kernel NMF

Relaxed K-means clustering
[Kuang et al.,2012]

- Orthogonal Symmetric NMF \longrightarrow Kernel K-means clustering

Simple example

cluster $1 \quad$ cluster 2
$X=\left(\begin{array}{ccccccc}\overbrace{1.3} & 1.8 & 4.8 & 7.1 & 5.0 & 5.2 & 8.0 \\ 1.5 & 6.9 & 3.9 & -5.5 & -8.5 & -3.9 & -5.5 \\ 6.5 & 1.6 & 8.2 & -7.2 & -8.7 & -7.9 & -5.2 \\ 3.8 & 8.3 & 4.7 & 6.4 & 7.5 & 3.2 & 7.4 \\ -7.3 & -1.8 & -2.1 & 2.7 & 6.8 & 4.8 & 6.2\end{array}\right)$

$$
F_{\text {svd }}=\left(\begin{array}{cc}
-0.41 & 0.50 \\
0.35 & 0.21 \\
0.66 & 0.32 \\
-0.28 & 0.72 \\
-0.43 & -0.28
\end{array}\right), F_{\text {semi }}=\left(\begin{array}{cc}
0.05 & 0.27 \\
0.40 & -0.40 \\
0.70 & -0.72 \\
0.30 & 0.08 \\
-0.51 & 0.49
\end{array}\right), F_{\text {cuvx }}=\left(\begin{array}{cc}
0.31 & 0.53 \\
0.42 & -0.30 \\
0.56 & -0.57 \\
0.49 & 0.41 \\
-0.41 & 0.36
\end{array}\right), C_{\text {Kmeans }}=\left(\begin{array}{cc}
0.29 & 0.52 \\
0.45 & -0.32 \\
0.59 & -0.60 \\
0.46 & 0.36 \\
-0.41 & 0.37
\end{array}\right)
$$

$$
\left\|F_{\text {convex }}-C_{\text {Kmeans }}\right\|=0.08 \quad G_{\text {svd }}^{T}=\left(\begin{array}{ccccccc}
0.25 & 0.05 & 0.22 & -.45 & -.44 & -.46 & -.52 \\
0.50 & 0.60 & 0.43 & 0.30 & -0.12 & 0.01 & 0.31
\end{array}\right)
$$

$$
\left\|F_{\text {semi }}-C_{\text {Kroasas }}\right\|=0.53
$$

$$
G_{\text {semi }}^{T}=\begin{array}{|ccc|cccc}
\hline 0.61 & 0.89 & 0.54 & 0.77 & 0.14 & 0.36 & 0.84 \\
0.12 & 0.53 & 0.11 & \boxed{1.03} & 0.60 & 0.77 & 1.16 \\
\hline
\end{array}
$$

$$
G_{\text {cnvx }}^{T}=\left(\begin{array}{ccccccc}
0.31 & 0.31 & 0.29 & 0.02 & 0 & 0 & 0.02 \\
0 & 0.06 & 0 & 0.31 & 0.27 & 0.30 & 0.36
\end{array}\right)
$$

$$
\left\|X-F G^{T}\right\|=0.27940,0.27944,0.30877
$$

SVD Semi Convex

NMF vs PLSI [Ding et al., 2008]

Theorem:

Any (local) maximum likelihood solution of PLSI is a solution of NMF with KL divergence.

Experimental results on different data sets:

Disagreements between NMF and PLSI

	WebAce	CSTR	WebKB	Reuters	Log
A	0.083	0.072	0.239	0.070	0.010
B	0.029	0.025	0.056	0.051	0.010
C	0.022	0.013	0.052	0.040	0.012

All 3 type experiments begin with the same smoothed K-means. (A) Smoothed K-means to NMF. Smoothed K-means to PLSI. (B) Smoothed K-means to NMF to PLSI. (C) Smoothed K-means to PLSI to NMF.

NMF vs Spectral Clustering(Normalized Cut)

It can be proved that the formulation of SymNMF can be related as a generalized form of many graph clustering algorithms.

	Spectral clustering	SymNMF				
Objective	$\min _{H^{T} H=I}\left\\|A-H H^{T}\right\\|_{F}^{2}$	$\min _{H \geq 0}\left\\|A-H H^{T}\right\\|_{F}^{2}$				
Step 1	Obtain the global optimal $H_{n \times k}$ by computing k leading eigenvectors of A	Obtain a stationary point solution using some minimization algorithm				
Step 2	Normalize each row of H	(no need to normalize H)				
Step 3	Infer clustering assignments from the rows of H (e.g. by K-means)	The largest entry in each row of H indicates the clustering assignments				

La Calanque, Carry-le-Rouet
du 7 au 12 Juin 2014

What are the applications of NMF for the real-world tasks?

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Text mining

- Topic model: NMF as an alternative to PLSI ([Ding et al., 2008], [Gaussier et al.,2005])
- Document clustering([Xu et al., 2003], [Shahnaz et al.,2006])
- Topic detection and trend analysis, email analysis([Berry et al., 2005], [Keila et al.,2005], [Cao et al.,2008])

La Calanque, Carry-le-Rouet
du 7 au 12 Juin 2014

Image analysis and computer vision

- Image analysis and computer vision
- Feature representation, sparse coding ([Lee et al., 99]; [Guillamet et al., 01]; [Hoyer et al., 02]; [Li et al. 01])
- Video tracking ([Bucak et al., 07])

Fig. 2 (a) Original video frame 971. (b) Original video frame 1436. Reconstructed difference image obtained for the frame 1436 (c) by batch NMF with $r=2$, (d) by INMF with $r=2, \alpha=0.2$ and (e) by IPCA with space size $r=2, \alpha=0.8$.

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Social networks

- Social network analysis
- Community structure and trend detection ([Chi et al., 07]; [Wang et al., 08])
- Recommendation system ([Zhang et al., 06])

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Bioinformatics

- Our goal is to discover hidden structures in biological data
- Bioinformatics-microarray data analysis ([Brunet et al., 04], [H. Kim and Park, 07])

[Brunet, 2004]

La Calanque, Carry-le-Rouet du 7 au 12 Juin 2014

Audio analysis

- The idea is to apply NMF to perform signal decomposition
- Acoustic signal processing, blind source separating ([Cichocki et al., 04])

La Calanque, Carry-le-Rouet
"-Transfer learning (1)

Definition

- Given a source domain \mathbf{D}_{S} and a learning task $\mathbf{T}_{\mathbf{S}}$, a target domain \mathbf{D}_{T} and a target task \mathbf{T}_{T}, transfer learning aims to help improve the learning performance in D_{T} using knowledge gained from \mathbf{D}_{S} and \mathbf{T}_{S}, where $\mathbf{D}_{\mathrm{S}} \neq \mathbf{D}_{\mathrm{T}}$ and $\mathrm{T}_{\mathrm{S}} \neq \mathrm{T}_{\mathrm{T}}$.

La Calanque, Carry-le-Rouet Transfer learning (2)

- Unsupervised transfer learning using kernel target alignment optimization ([Redko and Bennani, 2014])
- Unsupervised transfer learning using tri-factorization based on discovering distinct concepts ([Zhuang et al.,2013])
- Unsupervised transfer learning using Multilayer NMF ([Redko and Bennani, 2014])

La Calanque, Carry-le-Roue du 7 au 12 Juin 2014

Feel free to ask questions if you have any.

