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Motivation
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Temporal Data

Definition

- A kind of sequence data:

- an ordered set of elements
- order criterion: time

Temporal data are ubiquitous

- User Behaviour Analysis

- Evolving social Networks

- Load curve Prediction

- Learning from sensor networks
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Temporal data structures
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Temporal alignments
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Temporal alignments

Let xi = (xi1, ..., xiT ), xi′ = (xi′1, ..., xi′T ) be two time series of length T .

Definition

An alignment π ∈ A of length |π| = m between two time series xi and xi′ is defined as a sequence of m
couples of aligned elements:

π = ((π1(1), π2(1)), (π1(2), π2(2)), ..., (π1(m), π2(m)))

- π defines a warping function that realizes a mapping from time axis of xi onto time axis of xi′
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Temporal alignments: conditions

1 No a priori knowledge about which sub-period contain important information

2 Continuity and monotonic conditions: π1 and π2 define applications from {1, ...,m} to {1, ..,T} that
satisfy ∀ j ∈ {1, ..,m − 1}:

π1(j + 1) ≤ π1(j) + 1 and π2(j + 1) ≤ π2(j) + 1,
(π1(j + 1)− π1(j)) + (π2(j + 1)− π2(j)) ≥ 1.

3 Boundary conditions:

1 = π1(1) ≤ π1(2) ≤ ... ≤ π1(m) = T
1 = π2(1) ≤ π2(2) ≤ ... ≤ π2(m) = T

4 Adjustment window condition:

|π1(j)− π2(j)| ≤ r , r = 0, ..,T the window length

5 Slope constraint condition:

- the slop intensity controlled by p = r
c = 0, 1, 2, ...,

it imposes to a point that moves forward in the direction of one dimension consecutive c times, to step
at least r times in the diagonal direction.

- p = 0, there is no restrictions on the slope, p =∞ the warping function π is restricted to diagonal.
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Values and behavior based metrics
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Metrics for temporal data

Euclidean alignment

The Euclidean alignment π between xi and xi′ alignes elements observed at the same time:

π = ((π1(1), π2(1)), (π1(2), π2(2)), ..., (π1(T ), π2(m)))

∀ k = 1, ...m, π1(k) = π2(k) = k, |π| = T

Euclidean Distance for Time Series

The Euclidean Distance (DE) distance between the time series xi and xi′ is given by:

DE(xi , xi′ )
def

====
1

|π|

|π|∑
k=1

ϕ(xi π1(k), xi′ π2(k)) =
1

T

T∑
t=1

ϕ(xit , xi′t )

ϕ taken as the euclidean norm.

Ahlame Douzal (Ahlame.Douzal@imag.fr) AMA-LIG, Université Joseph Fourier (EPAT’2014) ()Tutorial Learning Metrics For Temporal Data 10 / 49



Unconstrained temporal alignments

Unconstrained Dynamic Time Warping ([SK83], [KL83])

The Dynamic Time Warping (DTW ) dissimilarity measure between the time series xi and xi′ is given by :

DTW (xi , xi′ )
def

==== min
π∈A

C(π)

C(π)
def

====
1

|π|

|π|∑
k=1

ϕ(xi π1(k), xi′ π2(k)) =
1

|π|
∑

(t,t′)∈π

ϕ(xit , xi′t′ )

ϕ taken as the euclidean norm.
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Temporal alignments under global/local constraints

Sakoe-Chiba-band [SC78] Itakura [Ita75] Rabiner [Rab89]

Global window Slope constraints Local constraints
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Metrics for temporal data: Sakoe-Chiba constraint

Sakoe-Chiba Dynamic Time Warping [SC78]

The Sakoe-Chiba band Dynamic Time Warping (DTWSC ) dissimilarity measure between the time series xi and
xi′ is given by:

DTWSC (xi , xi′ )
def

==== min
π∈A

C(π)

C(π)
def

====
1

|π|

|π|∑
k=1

wπ1(k),π2(k) ϕ(xi π1(k), xi′ π2(k)) =
1

|π|
∑

(t,t′)∈π

wt,t′ ϕ(xit , xi′t′ )

wt,t′ = 1, if |t − t′| < c, ∞ if |t − t′| ≥ c

- ϕ taken as the euclidean norm,
- wt,t′ weights that constrain A to a subset of alignments
- c being the Sakoa-Chiba band width
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Temporal alignment

Characteristics

- Dynamic programming alignments deal with delays or time differences

- Pairwise alignments

- Comparison involves the whole observations (no a priori knowledge about informative sub-periods)

- Values-based metrics

- Usage in classification/clustering: assumption of similar dynamics within classes

Lack of !!

- Behavior-based metrics

- Comparison involves sub-period importances

- Multiple temporal alignments

- Address time series of complex dynamics
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Behavior-based metrics
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Behavior-based metrics

Definition (Similar / Opposite behavior)

- Two time series are said similar if, for each period [ti , ti+1], they increase or decrease simultaneously
with the same growth rate

- Two time series are said opposite if, for each period [ti , ti+1], when one time series increases, the other
decreases and (vice-versa) with the same growth rate (in absolute value)

- Two time series are said of different behaviors if not similar nor opposite (linearly and stochastically
independent)

Some contributions

- Derivative-based for Slope comparison [KP01], [MLKCW03], [XW10]

- Correlation coefficient-based

- Kendall coefficient, qualitative distance [cTCK02], [SB08]

- Spearman coefficient elements rank comparison [AT10], [CVMW07], [RBK08]

- Autocorrelation-based temporal kernel [GHS11]

- Temporal Correlation [DCN07], [DCDG09], [DCA12]
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Behavior-based metrics: Slope comparison

Derivative Dynamic Time Warping [KP01]

DDTW (xi , xi′ )
def

==== min
π∈A

C(π)

C(π)
def

====
1

|π|

|π|∑
k=1

ϕ(∆i π1(k),∆i′ π2(k)) =
1

|π|
∑

(t,t′)∈π

ϕ(∆it ,∆i′t′ )

∆it =
(xi t − xi t−1) + (xi t+1 − xi t−1)/2

2

- ignore the sign of the slope
(e.g. ∆it = +1, ∆jt = +3, ∆kt = −1, and ϕ(∆i t ,∆j t ) = ϕ(∆i t ,∆k t ) = +2)
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Behavior-based metrics: Pearson correlation coefficient

Pearson correlation coefficient

x = (x1, ..., xn), y = (y1, ..., yn)

Cor(x, y) =

∑
i,i′ (xi − xi′ )(yi − yi′ )√∑

i,i′ (xi − xi′ )
2
√∑

i,i′ (yi − yi′ )
2

+ / -

+ Similar, opposite, different ⇒ Cor = 1, -1 and 0

- Higher Cor 6⇒ similar dynamics

- Involve all the couples i , i ′ (ignore the temporal dependency)

- Overestimate the similarity (tendency effects, drifts,...)
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Behavior-based metrics: autocorrelation

Difference between Auto-Correlation Operators [GHS11]

x = (x1, ..., xn), y = (y1, ..., yn), x̃ = (ρ1(x), ..., ρK (x)), ỹ = (ρ1(y), ..., ρK (y))

ρτ (x) =

∑T−τ
i=1 (xi − x̄)(xi+τ − x̄)∑T

i=1(xi − x̄)2
, dDACO (x, y) = ‖x̃ − ỹ‖2

+ Divergence measure between correlogrammes (usefull for model selection)

- Close autocorrelation ρτ (lower dDACO ) 6⇒ similar behaviors !

dDACO (x, y) = 0 for x, y of opposite behaviors as

x̃ = ỹ = (1.000,−0.415,−0.234, 0.394,−0.170,−0.074)
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Behavior-based metrics: temporal correlation

Temporal correlation coefficient Cort(x, y) of order r [DCN07], [DCDG09], [DCA12]

Cort(x, y) =

∑
i,i′ mii′ (xi − xi′ )(yi − yi′ )√∑

i,i′ mii′ (xi − xi′ )
2
√∑

i,i′ mii′ (yi − yi′ )
2

mii′ = 1 si |i ′ − i| ≤ r , 0 otherwise (temporal dependency within r)

+ / -

+ Similar, opposite, different ⇔ Cort = 1, -1 and 0

+ Non sensitive to tendency and drifts (lower r advised)

- Sensitive to noise (higher r advised)
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Illustration (1)

15 synthetic time series
3 classes: F1 = {1, ..5}, F2 = {6, ..10} and F3 = {11, ..15}

F1 = {f1(t)/f1(t) = g(t) + 2t + 3 + ε}
F2 = {f2(t)/f2(t) = µ− g(t) + 2t + 3 + ε}
F3 = {f3(t)/f3(t) = 4g(t)− 3 + ε}

- g(t): a random discrete function,
- µ = E(g(t))
- ε ; N(0, 1),
- 2t + 3: a linear trend effect.
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Illustration (2)

- Both the Euclidean distance and the dynamic time warping give Si closer to Sk than to Sj ,

- dE (Si , Sk ) = 4.24 < dE (Si , Sj ) = 15.13 < dE (Sj , Sk ) = 16.15

- ddtw (Si , Sk ) = 6 < ddtw (Si , Sj ) = 29 < ddtw (Sj , Sk ) = 29
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Clustering time series

Hierarchical clustering
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Illustration (3) : cor vs cort
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Dynamic programming alignments

Characteristics

- Dynamic programming alignments deal with delays or time differences

- Pairwise alignments

- Comparison involves the whole observations (no a priori knowledge about informative sub-periods)

- Values-based metrics

- Usage in classification/clustering: assumption of similar dynamics within classes

Lack of !!

- Behavior-based metrics

- Comparison involves sub-period importances

- Multiple temporal alignments

- Address time series of complex dynamics
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Complex temporal data !

* Temporal kernels

- Learning temporal matching
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Temporal kernels: under Euclidean alignment

Temporal Correlation Kernel [DCA12]

kcort (xi , xi′ )
def

==== Cort(xi , xi′ )

Cort is a linear kernel (p.d.)

Autocorrelation Kernel [GHS11]

kDACO (xi , xi′ )
def

==== e
− 1
σ2 dDACO (xi ,xi′ )

kDACO is a gaussian kernel (p.d.)
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Temporal kernels: under dynamic warping alignment

Dynamic Time Warping-based Kernels ([BHB02]

kDTW (xi , xi′ )
def

==== e−
1
t

DTW (xi ,xi′ )

- non p.d. kernel, t a normalization parameter

Sakoe-Chiba Dynamic Time Warping Kernel

kSC (xi , xi′ )
def

==== e−
1
t

DTWSC (xi ,xi′ )

- non p.d. kernel, t a normalization parameter
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Temporal kernels: under dynamic warping alignment

Dynamic Temporal Alignment Kernel [SNNS01]

DTAK(xi , xi′ )
def

==== max
π∈A

C(π)

C(π)
def

====
1

|π|

|π|∑
j=1

ϕ(xi π1(j), xi′ π2(j)) =
1

|π|
∑

(t,t′)∈π

ϕ(xit , xi′t′ )

ϕ(xit , xi′t′ ) = kσ(xit , xi′t′ ) = e
− 1
σ2 ‖xit − xi′t′ ‖

2

- non p.d. kernel, but positive semidefinite matrices (sufficient in an experimental context)
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Temporal kernels: under dynamic warping alignment

Global Alignment Kernel [CVBM07]

Ksoftmax (xi , xi′ )
def

====
∑
π∈A

|π|∏
j=1

k(xi π1(j), xi′ π2(j))

k(x, y)
def

====
1
2 e
− 1
σ2 ‖x−y‖2

1− 1
2 e
− 1
σ2 ‖x−y‖2

+ non p.d. but, the property k
1+k yields positive semidefinite matrices

- Diagonally dominant Gram matrix (cause of non p.d. property, may be rescaled)

Global Alignment Kernel [Cut11]

KGA(xi , xi′ )
def

====
∑
π∈A

|π|∏
j=1

k(xi π1(j), xi′ π2(j))

k(x, y)
def

==== e−φσ (x,y)
, φσ(x, y)

def
====

1

2σ2
‖x − y‖2 + log(2− e

− 1
2σ2 ‖x−y‖2
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Temporal kernels: under dynamic warping alignment

Triangle Global Alignment Kernel [Cut11]

KTGA(xi , xi′ )
def

====
∑
π∈A

|π|∏
j=1

k(xi π1(j), xi′ π2(j))

k(xi π1(j), xi′ π2(j))
def

====
wπ1(j),π2(j) kσ(xi π1(j), xi′ π2(j))

2− wπ1(j),π2(j) kσ(xi π1(j), xi′ π2(j))

w a radial basis kernel on N (a triangular kernel for integers):

w(j, j′) =

(
1−
|j − j′|

c

)
+

c being the Sakoe-Chiba band width.
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Complex temporal data !

- Temporal kernels

* Learning temporal matching
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Time Series: complex data !

Real Data: UCI ML Household Electrical load consumption

Data characteristics:

- Each time series gives a daily load consumption

- In Low (vs. High) class the average consumption between 6-8 pm is lower (resp. higher) than the
annual average consumption

- Consumption profiles are different within class
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Objective and challenges

Objective

- The early classification (before 6 pm) of a load consumption to predict consumer demand on 6-8pm

Standard approaches

- Based on a standard time series metric (DTW)

- Assign a time series to the class of similar consumption profiles

Challenge

- Load consumption exhibit different global behaviors within classes or nearly similar ones between classes
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Learning temporal matching for time series classification

Objective

- Complex time series classification: different dynamics within classes, slight differences between classes

For this,

- Enlarge time series alignments to a less constrained temporal matching

- The learning process involves the whole dynamics within and between classes

- Match time series on their shared features within classes and distinctive ones between classes

- Derive a metric based on the highlighted discriminative features to be used for the time series
classification.
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Proposal’s key [FDCG13], [FDCG+14]

Given a set of linked time series (alignment, temporal matching,...)

1

i

T

1

i"

T

C2

1

i

T

1

i'

T

C1

S3S4 S2S1

mi,i"
4,3 mi,i"

1,2

Idea

- Each link induces a variability corresponding to the divergence between the connected values

- To reveal shared features within a class, we minimize the within variance by removing links between non
shared features

- To reveal differential features between classes, we maximize the between variance by removing links
between shared features
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Proposal’s key [FDCG13], [FDCG+14]

How?

- A new formalization of the classical variance/covariance for a set of time series, as well as for a partition
of time series

- Strengthen or weaken links according to their contribution to the variances within and between classes

C2 C1

1111
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Variance/Covariance formalization for time series data

- S1, ..., Sn multivariate time series, of length T describing p variables

- X : description of S1, ..., Sn by p variables

- Assume time series linked through DTW alignment, temporal matching, ...

- We define M(n,n)(Mll′ ) as an adjacency block matrix

- A block Mll′ specifies the linkage between Sl and Sl′

- A term of Mll′ mll′
ii′ = 1 if the instants i and i ′ of Sl and S′l are aligned, 0 otherwise.
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Variance induced by a set of time series

- Variance/covariance induced by a set of time series

VM (X ) = X t (I −M′)t P(I −M′)X

M′: row normalized matrix of M

(I −M′): Laplacian matrix of the graph defined by the connected observations

Each observation is centered relative to the average of its neighborhood.

Remark: VM leads to the total Variance/Covariance

- For a complete linkage defined by a unit matrix M = 1

- If each time series shrinks to one point
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Variance induced by a partition of time series

Variance/covariance within et between classes of time series

VMW
(X ) = X t (I −M′W )t P(I −M′W )X

VMB
(X ) = X t (I −M′B )t P(I −M′B )X

intra-class matching MW :

mll′
ii′ = 1 if the linked time series belong to the same class, 0 otherwise.

inter-class matching MB :

mll′
ii′ = 1 if the linked time series belong to different classes, 0 otherwise.

Remark: VMW
, VMB

lead to the within, between Variance/Covariance

- For a complete linkage defined by a unit matrix MW = 1, MB = 1

- If each time series shrinks to one point

Ahlame Douzal (Ahlame.Douzal@imag.fr) AMA-LIG, Université Joseph Fourier (EPAT’2014) ()Tutorial Learning Metrics For Temporal Data 40 / 49



Learning a discriminative temporal matching
Two consecutive phases algorithm

M
0
w

Sl

Sl'

1 T

1 T

Unconstrained
linkage

Learn intra-class matching
Min(VMW)

M *w

Fi
rs

t p
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Shared
features

Learn inter-class matching
Max(VMB)

Shared Differential Discriminant
M*
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features
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Learning the intra-class temporal matching

Sl = (x l
1, ..., x l

T ), Sl′ = (x l′
1 , ..., x l′

T ) belonging to Ck (|Ck | = nk )

M\(i, i ′, l, l′) : M after the removal of the link (i, i ′) between Sl and Sl′ (mll′
ii′ = 0)

Outlines of the algorithm

1 Initialise MW as a complete linkage

∀ i, i ′ ∈ {1, ...T} and Sl , Sl′ of the same class mll′
ii′ = 1

2 Calculate the contribution C ll′
ii′ to the variance VMW

of each link i, i ′ between Sl et Sl′

C ll′
ii′ = VMW

− VMW \(i,i′,l,l′)

3 Delete links (i, i ′) (mll′
ii′ = 0) of positive contributions C ll′

ii′ > 0

4 Iterate steps 2 and 3 until VMW
stabilization
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Non degenerate and convergence conditions

∀k ∈ {1, ...,K}, ∀(l, l′) ∈ Ck , ∀(i, i ′) ∈ [1,T ]2

Variance definition

1- mll
ii > 0

2- MW row-normalized :
∑nk

l′=1

∑T
i′=1

mll′
ii′ = 1

Non-degenerate variance

3- Each obs. of Sl should be linked to at least one obs. of Sl′ :
∑T

i′=1
mll′

ii′ > 0

Convergence of the variance minimization process

4- The delete of (i, i ′) impacts the i et i ′ neighborhoods (rows i and i ′): at each iteration, delete the link
of maximal positive contribution per row
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Derive discriminative metric

M∗: the learned discriminative matching

- Let M l .
∗ be the average matching to Sl :

M l .
∗ =

1

(n − nk)T

∑
l′

M ll′
∗

with yl′ 6= yl = k

- The discriminative dissimilarity between SNew and Sl

Dl(Sl ,SNew ) = min
r∈{0,..,T−1}

(
∑

|i−i′|≤r ; (i,i′)∈[1,T ]2

ml .
ii′∑

|i−i′|≤r m
l .
ii′
(x l

i − xNew
i′ )2)

where r corresponds to the Sakoe-Chiba band width.
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Classification of the household electric power consumption

Objective: Early classification of consumption profiles for consumer demand prediction on 6-8pm
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Classification of the household electric power consumption

Learned discriminant matching (CONSLEVEL)

M∗W (Low) M∗B (Low vs. High)
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Preliminary results

- Classes compactness/separability by MDS
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interface., Modelling C Automatic Control (theory and applications) 67 (2007), 156–166.

A. Douzal-Chouakria and C. Amblard, Classification trees for time series, Pattern Recognition 45 (2012), no. 3, 1076–1091.

A. Douzal-Chouakria, A. Diallo, and F. Giroud, Adaptive clustering for time series: application for identifying cell cycle expressed genes,

Computational Statistics and Data Analysis 53 (2009), no. 4, 1414–1426.

A. Douzal-Chouakria and P.N. Nagabhushan, Adaptive dissimilarity index for measuring time series proximity, Advances in Data Analysis and

Classification Journal. 1 (2007), no. 1, 5–21.

Cedric Frambourg, Ahlame Douzal-Chouakria, and Eric Gaussier, Learning multiple temporal matching for time series classification, Advances in

Intelligent Data Analysis XII, Springer, 2013, pp. 198–209.
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Ahlame Douzal (Ahlame.Douzal@imag.fr) AMA-LIG, Université Joseph Fourier (EPAT’2014) ()Tutorial Learning Metrics For Temporal Data 49 / 49


