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Intuition behind Metric Learning

Importance of Metrics

Pairwise metric

The notion of metric plays an important role in many domains such as
classification, regression, clustering, ranking, etc.

?
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Intuition behind Metric Learning

Minkowski distances: family of distances induced by `p norms

dp(x, x′) = ‖x− x′‖p =

(
d∑

i=1

|xi − x ′i |p
)1/p

For p = 1, the Manhattan distance dman(x, x′) =
∑d

i=1 |xi − x ′i |.
For p = 2, the “ordinary” Euclidean distance:

deuc(x, x′) =

(
d∑

i=1

|xi − x ′i |2
)1/2

=
√

(x− x′)T (x− x′)

For p →∞, the Chebyshev distance dche(x, x′) = maxi |xi − x ′i |.

p=0.5 p=1 p=1.5 p=2 p=inftyp=0.3p=0
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Intuition behind Metric Learning

Key question

How to choose the right metric?

The notion of good metric is problem-dependent

Each problem has its own notion of similarity, which is often badly
captured by standard metrics.
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Intuition behind Metric Learning

How to discriminate between humans and dogs?

Predicted label?
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Intuition behind Metric Learning

Limitations of standard metrics

It’s not what it looks Like...
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Intuition behind Metric Learning

Metric learning
Adapt the metric to the problem of interest

Solution: learn the metric from data

Basic idea: learn a metric that assigns small (resp. large) distance to pairs
of examples that are semantically similar (resp. dissimilar).

Metric Learning

It typically induces a change of representation space which satisfies
constraints.

Sebban (LaHC) Metric Learning 8 / 46



Intuition behind Metric Learning

“Learnable” Metrics

The Mahalanobis distance

∀x, x′ ∈ Rd , the Mahalanobis distance is defined as follows:

dM(x, x′) =
√

(x− x′)TM(x− x′),

where M ∈ Rd×d is a symmetric PSD matrix (M � 0).

The original term refers to the case where x and x′ are random vectors
from the same distribution with covariance matrix Σ, with M = Σ−1.
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Intuition behind Metric Learning

PSD matrices

Definition (PSD matrix)

A matrix M ∈ Rd×d is positive semi-definite
(PSD) if all its eigenvalues are nonnegative.
The cone of symmetric PSD d × d
real-valued matrices is denoted by Sd+. As a
shortcut for M ∈ Sd+ we use M � 0.
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Useful properties

If M � 0, then

xTMx ≥ 0 ∀x (as a linear operator, can be seen as nonnegative
scaling).

M = LTL for some matrix L.
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Intuition behind Metric Learning

Mahalanobis distance learning

Using the decomposition M = LTL, where L ∈ Rk×d , where k is the rank
of M, one can rewrite dM(x, x′).

dM(x, x′) =
√

(x− x′)TLTL(x− x′)

=
√

(Lx− Lx′)T (Lx− Lx′).

Mahalanobis distance learning = Learning a linear projection

If M is learned, a Mahalanobis distance implicitly corresponds to
computing the Euclidean distance after a learned linear projection of
the data (learned under constraints) by L in a k-dimensional space.
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Intuition behind Metric Learning

Metric learning in a nutshell: Basic setup

Learning from side information

Must-link / cannot-link constraints:

S = {(xi , xj) : xi and xj should be similar},
D = {(xi , xj) : xi and xj should be dissimilar}.

Relative constraints:

R = {(xi , xj , xk) : xi should be more similar to xj than to xk}.
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State of the Art

Metric learning in a nutshell

General formulation

Given a metric, find its parameters M∗ as

M∗ = arg min
M�0

[`(M,S,D,R) + λR(M)] ,

where

`(M,S,D,R) is a loss function that penalizes violated constraints,

R(M) is some regularizer on M,

and λ ≥ 0 is the regularization parameter.

State of the art methods essentially differ by the choice of constraints,
loss function and regularizer on M.
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State of the Art

Loss functions for binary classification
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State of the Art

Regularization

The mixed L2,1 norm on matrix M is defined as ‖M‖2,1 =
∑d

i=1 ‖Mi‖2.

The nuclear norm (also called trace norm): M: ‖M‖∗ = tr(M).
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State of the Art Mahalanobis Distance Learning

LMNN (Weinberger et al. 2005)

Main Idea

Define constraints tailored to k-NN in a local way: the k nearest neighbors
should be of same class (“target neighbors”), while examples of different
classes should be kept away (“impostors”):

S = {(xi , xj) : yi = yj and xj belongs to the k-neighborhood of xi},
R = {(xi , xj , xk) : (xi , xj) ∈ S, yi 6= yk}.
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State of the Art Mahalanobis Distance Learning

LMNN (Weinberger et al. 2005)

Formulation

min
M�0

(1− µ)
∑

(xi,xj)∈S

d2
M(xi, xj) + µ

∑
i ,j ,k

ξijk

s.t. d2
M(xi, xk)− d2

M(xi, xj) ≥ 1− ξijk ∀(xi, xj, xk) ∈ R,

where µ controls the “pull/push” trade-off.

Remarks

Advantages: Convex, with a solver based on working set and
subgradient descent. Can deal with millions of constraints and very
popular in practice.

Drawback: Subject to overfitting in high dimension.
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State of the Art Mahalanobis Distance Learning

ITML (Davis et al. 2007)

Information-Theoretical Metric Learning (ITML) introduces LogDet
divergence regularization. This Bregman divergence on PSD matrices is
defined as:

Dld(M,M0) = trace(MM0
−1)− log det(MM0

−1)− d .

where d is the dimension of the input space and M0 is some PSD matrix
we want to remain close to. ITML is formulated as follows:

min
M�0

Dld(M,M0) + γ
∑
i ,j ,k

ξij

s.t. d2
M(xi, xj) ≤ u + ξij ∀(xi, xj) ∈ S

d2
M(xi, xj) ≥ v − ξij ∀(xi, xj) ∈ D,

The LogDet divergence is finite iff M is PSD.
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State of the Art Nonlinear Metric Learning

Nonlinear metric learning
The big picture

Nonlinear metric learning: 3 approaches

1 Kernelization of linear methods.

2 Learning a nonlinear metric.

3 Learning several local linear metrics.
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State of the Art Nonlinear Metric Learning

Nonlinear metric learning
Kernelization of linear methods

Some algorithms have been shown to be kernelizable, but in general
this is not trivial: a new formulation of the problem has to be derived,
where interface to the data is limited to inner products, and
sometimes a different implementation is necessary.

When the number of training examples n is large, learning n2

parameters may be intractable.

A solution: KPCA trick (Chatpatanasiri et al., 2010)

Use KPCA (PCA in kernel space) to get a nonlinear but
low-dimensional projection of the data.

Then use unchanged algorithm!
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State of the Art Nonlinear Metric Learning

Nonlinear metric learning
Learning a nonlinear metric: GB-LMNN (Kedem et al. 2012)

Main idea

Learn a nonlinear mapping φ to optimize the Euclidean distance
dφ(x, x′) = ‖φ(x)− φ(x′)‖2 in the transformed space.

φ = φ0 + α
∑T

t=1 ht , where φ0 is the mapping learned by linear
LMNN, and h1, . . . , hT are gradient boosted regression trees.

Intuitively, each tree divides the space into 2p regions, and instances
falling in the same region are translated by the same vector.
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State of the Art Nonlinear Metric Learning

Nonlinear metric learning
Local metric learning

Motivation

Simple linear metrics perform well locally.

Since everything is linear, can keep formulation convex.

M2-LMNN (Weinberger and Saul 2008,2009)

Partition in C clusters (in a supervised or unsupervised way).

C Mahalanobis distances are learned.

Pitfalls

How to split the space?

How to avoid a blow-up in number of parameters to learn, and avoid
overfitting?

How to obtain a proper (continuous) global metric?

. . .
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State of the Art Online Metric Learning

Online learning

Warning

If the number of training constraints is very large, previous algorithms
become huge, possibly intractable optimization problems.

One solution: online learning

In online metric learning, the algorithm receives training pairs one
at a time and updates the current hypothesis at each step.

Often come with guarantees in the form of regret bounds stating
that the accumulated loss suffered along the way is not much worse
than that of the best hypothesis chosen in hindsight.
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State of the Art Online Metric Learning

Online learning

Regret bound

A regret bound has the following general form:

T∑
t=1

`(ht , zt)−
T∑
t=1

`(h∗, zt) ≤ O(T ),

where T is the number of steps, ht is the hypothesis at time t and h∗ is
the best batch hypothesis.
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State of the Art Online Metric Learning

Mahalanobis distance learning
LEGO (Jain et al. 2008)

Formulation

At each step, receive (xt , x′t , yt) where yt is the target distance between xt
and x′t , and update as follows:

Mt+1 = arg min
M�0

Dld(M,Mt) + λ`(M, xt , x
′
t , yt),

where ` is a loss function (square loss, hinge loss...).

Remarks

It turns out that the above update has a closed-form solution which
maintains M � 0 automatically.

Can derive a regret bound.

Sebban (LaHC) Metric Learning 25 / 46



State of the Art Algorithmic and Theoretical Limitations

Limitations of the state of the art ML algorithms

Algorithmic limitations

Drawbacks of Mahalanobis distance learning:

Maintaining M � 0 is often costly, especially in high dimensions.

Objects must have same dimension.

Distance properties can be useful (e.g., for fast neighbor search), but
restrictive. Evidence that our notion of (visual) similarity violates the
triangle inequality (example below).

Motivation to learn similarity functions.Sebban (LaHC) Metric Learning 26 / 46



State of the Art Algorithmic and Theoretical Limitations

Similarity learning

Cosine similarity

The cosine similarity (widely used in data mining) measures the cosine of
the angle between two instances, and can be computed as

Kcos(x, x′) =
xTx′

‖x‖2‖x′‖2
.

Bilinear similarity

The bilinear similarity is related to the cosine but does not include
normalization and is parameterized by a matrix M:

KM(x, x′) = xTMx′,

where M is not required to be PSD nor symmetric.
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State of the Art Algorithmic and Theoretical Limitations

Limitations of the state of the art ML algorithms

Theoretical limitations

Establishing theoretical guarantees for the metric learning algorithms has
so far received very little attention. However, we may be interested in
theoretical results on:

the algorithm which makes use of it (“plug and hope” strategy):
generalization guarantees,

and on the learned metric dM itself (optimized w.r.t. training data):
consistency guarantees.

Bellet, A., Habrard, A., and Sebban, M. Similarity Learning for Provably
Accurate Sparse Linear Classification, ICML 2012.
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Theoretical Guarantees in Metric learning

Generalization Guarantees
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Theoretical Guarantees in Metric learning Generalization guarantees: Balcan et al. framework (2008)

Deriving generalization guarantees
Generalization guarantees for the classifier using the metric: (ε, γ, τ)-goodness

Definition (Balcan et al., 2008)

A similarity function K ∈ [−1, 1] is (ε, γ, τ)-good w.r.t. to an indicator
function R(x) defining a set of “reasonable points” if:

1 A 1− ε probability mass of examples (x , y) satisfy:

E(x ′,y ′)∼P
[
yy ′K (x , x ′)|R(x ′)

]
≥ γ.

2 Prx ′ [R(x ′)] ≥ τ. ε, γ, τ ∈ [0, 1]

The first condition requires that a 1− ε proportion of examples x are
on average more similar to reasonable examples of the same class
than to reasonable examples of the opposite class by a margin γ.

The second condition means that at least a τ proportion of the
examples are reasonable.
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Theoretical Guarantees in Metric learning Generalization guarantees: Balcan et al. framework (2008)

Strategy

If R is known, use K to map the examples to the space φ of “the similarity
scores with the reasonable points” (similarity map).

E

F
G

H

A

B

C
D

K(x,A)

K(x,B)

K
(x

,E
)
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Theoretical Guarantees in Metric learning Generalization guarantees: Balcan et al. framework (2008)

Deriving generalization guarantees
Generalization guarantees for the classifier using the metric: (ε, γ, τ)-goodness

A trivial linear classifier

By definition of (ε, γ, τ)-goodness, we have a linear classifier in φ that
achieves true risk ε at margin γ.
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K
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Theoretical Guarantees in Metric learning Generalization guarantees: Balcan et al. framework (2008)

Deriving generalization guarantees
Generalization guarantees for the classifier using the metric: (ε, γ, τ)-goodness

Theorem (Balcan et al., 2008)

If R is unknown, given K is (ε, γ, τ)-good and enough points to create a
similarity map, with high probability there exists a linear separator α
that has true risk ε at margin γ.

Question

Can we find this linear classifier in an efficient way?
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Theoretical Guarantees in Metric learning Generalization guarantees: Balcan et al. framework (2008)

Deriving generalization guarantees

Answer

Basically, yes: solve a Linear Program with 1-norm regularization. We get
a sparse linear classifier.

min
α

n∑
i=1

1−
n∑

j=1

αjyiK (xi , xj)


+

+ λ‖α‖1

L1 norm induces sparsity
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Theoretical Guarantees in Metric learning Generalization guarantees: Balcan et al. framework (2008)

SLLC (Bellet et al. 2012)

The performance of the linear classifier theoretically depends on how well
the similarity function satisfies the definition of goodness.

E(x ′,y ′)∼P
[
yy ′K (x , x ′)|R(x ′)

]
≥ γ.

SLLC optimizes the empirical goodness of K over the training set.

Formulation of SLLC

min
M∈Rd×d

1
n

n∑
i=1

1− yi
1

γ|R|
∑
xj∈R

yjKM(xi , xj)


+

+ β‖M‖2
F ,

where
KM(x, x′) = xTMx′.
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Theoretical Guarantees in Metric learning Generalization guarantees: Balcan et al. framework (2008)

SLLC (Bellet et al. 2012)

Properties of SLLC

SLLC has a number of desirable properties:

SLLC optimizes a link between the quality of the metric and the
quality of the linear classifier.

Unlike classic algorithms, which rely on pair or triplet-based
constraints, SLLC satisfies constraints that are defined over an
average of similarity scores.

SLLC has only one constraint per training example, instead of one
for each pair or triplet.

We can derive consistency guarantees on the learned similarity.
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Theoretical Guarantees in Metric learning Consistency Guarantees: Uniform Stability

Consistency Guarantees
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Theoretical Guarantees in Metric learning Consistency Guarantees: Uniform Stability

Deriving consistency guarantees
Consistency guarantees for the learned metric: uniform stability

Definition (Uniform stability for metric learning)

A learning algorithm A has a uniform stability in κ/n, where κ > 0, if

∀(T , x),∀i , sup
x1,x2

|`(AT , x1, x2)− `(AT i,x , x1, x2)| ≤ κ

n
,

where AT is the metric learned by A from T , and T i ,x is the set obtained
by replacing xi ∈ T by a new example x.

Theorem (Uniform stability bound)

For any algorithm A with uniform stability κ/n, with probability 1− δ over
the random sample T , we have:

R`(AT ) ≤ R`
T (AT ) +

2κ

n
+ (2κ+ B)

√
ln(2/δ)

2n
,

where B is a problem-dependent constant.
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Theoretical Guarantees in Metric learning Consistency Guarantees: Uniform Stability

Stability of SLLC

Formulation of SLLC

min
M∈Rd×d

1
n

n∑
i=1

1− yi
1

γ|R|
∑
xj∈R

yjKM(xi , xj)


+

+ β‖M‖2
F ,

where
KM(x, x′) = xTMx′.

Lemma

Let n and |R| be the number of training examples and reasonable points
respectively, |R| = τ̂n with τ̂ ∈ ]0, 1]. SLLC has a uniform stability in κ

n
with

κ =
1

γ
(

1

βγ
+

2

τ̂
),

where β is the regularization parameter and γ the margin.
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Theoretical Guarantees in Metric learning Consistency Guarantees: Uniform Stability

Consistency guarantees of SLLC

Theorem

Let γ > 0, δ > 0 and nT > 1. With probability at least 1− δ, for any
model M learned with SLLC, we have:

ε ≤ ε̂+
1

n

(
1

γ
(

1

βγ
+

2

τ̂
)

)
+

(
1

γ
(

1

βγ
+

2

τ̂
) + 1

)√
ln 1/δ

2n

where:

ε̂ = 1
n

∑n
i=1 [1− yi

1
γ|R|

∑|R|
k=1 ykKM(xi, xk)]+.

ε = E(xi,yi )∼P [1− yi
1

γ|R|
∑|R|

k=1 ykKM(xi, xk)]+.
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Experiments

Experimental Results

Comparison between a kernelized version (using a KPCA) of SLLC and:

Standard bilinear similarity.

LMNN

LMNN KPCA

ITML

ITML KPCA
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Experiments

Experiments with linear classifiers

Dataset Breast Iono. Rings Pima Splice Svmguide1 Cod-RNA

KI
96.57 89.81 100.00 75.62 83.86 96.95 95.91
20.39 52.93 18.20 25.93 362 64 557

SLLC
96.90 93.25 100.00 75.94 87.36 96.55 94.08
1.00 1.00 1.00 1.00 1 8 1

LMNN
96.81 90.21 100.00 75.15 85.61 95.80 88.40
9.98 13.30 18.04 69.71 315 157 61

LMNN KPCA
96.01 86.12 100.00 74.92 86.85 96.53 95.15
8.46 9.96 8.73 22.20 156 82 591

ITML
96.80 92.09 100.00 75.25 81.47 96.70 95.06
9.79 9.51 17.85 56.22 377 49 164

ITML KPCA
96.23 93.05 100.00 75.25 85.29 96.55 95.14
17.17 18.01 15.21 16.40 287 89 206
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Experiments

Rings
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Experiments

Conclusion and Perspectives: What next?

Scalability with both n and d

Optimiziation over the manifold of low-rank matrices [Cheng, 2013,
Shalit et al., 2012].
Combination of simple classifiers [Kedem et al., 2012, Xiong et al.,
2012].

More theoretical understanding
So far, only results for linear classification have been obtained [Bellet et
al., 2012b, Guo and Ying, 2014].
What about kNN classification, clustering or information retrieval?

Unsupervised metric learning
What is a good metric for clustering: preliminary work on this question
[Balcan et al., 2008b, Lajugie et al., 2014].

Adapting the metric to changing data
Life Long learning (ERC grant C. Lampert).
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Experiments

A (first) quick advertisement...

Recent survey

There exist many other metric learning approaches. Most of them are
discussed at more length in our recent survey:

Bellet, A., Habrard, A., and Sebban, M. (2013). A Survey on Metric
Learning for Feature Vectors and Structured Data. Technical report,

available at the following address: http://arxiv.org/abs/1306.6709
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Experiments

A (second) quick advertisement...

Conférence francophone sur 

l’Apprentissage automatique 
 

Saint-Étienne, du 8 au 10 juillet 2014 

http://cap2014.sciencesconf.org  

Dates importantes 

 Ouverture de la soumission des articles : 1er mars 2014 

 Clôture de la soumission des articles : 5 avril 2014 

 Notification aux auteurs : 15 mai 2014 

 Version finale : 1er juin 2014 

HackDay, le 7 Juillet 2014 
 

http://hackday.lip6.fr 
 

24h pour développer une application  

en apprentissage automatique  

Conférenciers Invités 

Francis BACH - INRIA, ENS Paris, France 

Hendrik BLOCKEEL -  KU Leuven, Belgique 

Président du Comité d'Organisation  

Amaury HABRARD - LaHC, Université de Saint-Étienne 

Présidents du Comité Scientifique  

Marc SEBBAN - LaHC, Université de Saint-Étienne 

Ludovic DENOYER - LIP6, Université Paris 6 

CAp'2014  
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