Metric Learning: from Algorithms to Theoretical Guarantees

M. Sebban

LABORATOIRE HUBERT CURIEN, UMR CNRS 5516 University of Jean Monnet Saint-Étienne (France)

EPAT 2014, Carry-le-Rouet, June, 2014

Outline

Intuition behind Metric Learning

State of the Art

- Mahalanobis Distance Learning
- Nonlinear Metric Learning
- Online Metric Learning
- Algorithmic and Theoretical Limitations

3 Theoretical Guarantees in Metric learning

- Generalization guarantees: Balcan et al. framework (2008)
- Consistency Guarantees: Uniform Stability

Experiments

Importance of Metrics

Pairwise metric

The notion of **metric plays an important role in many domains** such as *classification, regression, clustering, ranking,* etc.

Minkowski distances: family of distances induced by ℓ_p norms

$$d_{p}(\mathbf{x},\mathbf{x}') = \|\mathbf{x}-\mathbf{x}'\|_{p} = \left(\sum_{i=1}^{d} |x_{i}-x_{i}'|^{p}
ight)^{1/2}$$

p

For p = 1, the Manhattan distance d_{man}(x, x') = ∑^d_{i=1} |x_i - x'_i|.
For p = 2, the "ordinary" Euclidean distance:

$$d_{euc}(\mathbf{x}, \mathbf{x}') = \left(\sum_{i=1}^{d} |x_i - x'_i|^2\right)^{1/2} = \sqrt{(\mathbf{x} - \mathbf{x}')^T (\mathbf{x} - \mathbf{x}')}$$

• For $p \to \infty$, the Chebyshev distance $d_{che}(\mathbf{x}, \mathbf{x}') = \max_i |x_i - x'_i|$.

Key question

How to choose the right metric?

The notion of good metric is problem-dependent

Each problem has its own notion of similarity, which is often badly captured by standard metrics.

Intuition behind Metric Learning

How to discriminate between humans and dogs?

Predicted label?

Metric Learning

 Intuition behind Metric Learning

Limitations of standard metrics

It's not what it looks Like...

Sebban (LAHC)

Metric Learning

Metric learning Adapt the metric to the problem of interest

Solution: learn the metric from data

Basic idea: learn a metric that assigns small (resp. large) distance to pairs of examples that are semantically similar (resp. dissimilar).

It typically **induces a change of representation space** which satisfies constraints.

"Learnable" Metrics

The Mahalanobis distance

 $\forall \mathbf{x}, \mathbf{x}' \in \mathbb{R}^d$, the Mahalanobis distance is defined as follows:

$$d_{\mathsf{M}}(\mathsf{x},\mathsf{x}') = \sqrt{(\mathsf{x}-\mathsf{x}')^{\mathsf{T}}\mathsf{M}(\mathsf{x}-\mathsf{x}')},$$

where $\mathbf{M} \in \mathbb{R}^{d \times d}$ is a symmetric PSD matrix ($\mathbf{M} \succeq 0$).

The original term refers to the case where **x** and **x'** are random vectors from the same distribution with covariance matrix $\boldsymbol{\Sigma}$, with $\boldsymbol{\mathsf{M}} = \boldsymbol{\Sigma}^{-1}$.

PSD matrices

Definition (PSD matrix)

A matrix $\mathbf{M} \in \mathbb{R}^{d \times d}$ is positive semi-definite (PSD) if all its eigenvalues are nonnegative. The cone of symmetric PSD $d \times d$ real-valued matrices is denoted by \mathbb{S}^d_+ . As a shortcut for $\mathbf{M} \in \mathbb{S}^d_+$ we use $\mathbf{M} \succeq 0$.

Useful properties

- If $\mathbf{M} \succeq \mathbf{0}$, then
 - $\mathbf{x}^T \mathbf{M} \mathbf{x} \ge 0 \ \forall \mathbf{x}$ (as a linear operator, can be seen as nonnegative scaling).
 - $\mathbf{M} = \mathbf{L}^T \mathbf{L}$ for some matrix \mathbf{L} .

10 / 46

Mahalanobis distance learning

Using the decomposition $\mathbf{M} = \mathbf{L}^T \mathbf{L}$, where $\mathbf{L} \in \mathbb{R}^{k \times d}$, where k is the rank of \mathbf{M} , one can rewrite $d_{\mathbf{M}}(\mathbf{x}, \mathbf{x}')$.

$$d_{\mathsf{M}}(\mathbf{x}, \mathbf{x}') = \sqrt{(\mathbf{x} - \mathbf{x}')^{\mathsf{T}} \mathsf{L}^{\mathsf{T}} \mathsf{L}(\mathbf{x} - \mathbf{x}')}$$
$$= \sqrt{(\mathsf{L}\mathbf{x} - \mathsf{L}\mathbf{x}')^{\mathsf{T}} (\mathsf{L}\mathbf{x} - \mathsf{L}\mathbf{x}')}.$$

Mahalanobis distance learning = Learning a linear projection

If **M** is learned, a Mahalanobis distance implicitly corresponds to **computing the Euclidean distance after a learned linear projection** of the data (learned under constraints) by **L** in a k-dimensional space.

Metric learning in a nutshell: Basic setup

Learning from side information

• Must-link / cannot-link constraints:

$$S = \{(x_i, x_j) : x_i \text{ and } x_j \text{ should be similar}\},\$$

$$D = \{(x_i, x_j) : x_i \text{ and } x_j \text{ should be dissimilar}\}$$

• Relative constraints:

 $\mathcal{R} = \{(x_i, x_j, x_k) : x_i \text{ should be more similar to } x_j \text{ than to } x_k\}.$

General formulation

Given a metric, find its parameters \mathbf{M}^* as

$$\mathbf{M}^* = \arg\min_{\mathbf{M} \succeq \mathbf{0}} \left[\ell(\mathbf{M}, \mathcal{S}, \mathcal{D}, \mathcal{R}) + \lambda R(\mathbf{M}) \right],$$

where

General formulation

Given a metric, find its parameters \mathbf{M}^* as

$$\mathbf{M}^* = \arg\min_{\mathbf{M} \succeq 0} \left[\ell(\mathbf{M}, \mathcal{S}, \mathcal{D}, \mathcal{R}) + \lambda R(\mathbf{M}) \right],$$

where

• $\ell(M, \mathcal{S}, \mathcal{D}, \mathcal{R})$ is a loss function that penalizes violated constraints,

General formulation

Given a metric, find its parameters $\boldsymbol{\mathsf{M}}^*$ as

$$\mathbf{M}^* = \underset{\mathbf{M} \succeq \mathbf{0}}{\operatorname{arg\,min}} \left[\ell(\mathbf{M}, \mathcal{S}, \mathcal{D}, \mathcal{R}) + \lambda R(\mathbf{M}) \right],$$

where

- $\ell(M, \mathcal{S}, \mathcal{D}, \mathcal{R})$ is a loss function that penalizes violated constraints,
- R(M) is some regularizer on M,

General formulation

Given a metric, find its parameters $\boldsymbol{\mathsf{M}}^*$ as

$$\mathbf{M}^* = \underset{\mathbf{M} \succeq \mathbf{0}}{\operatorname{arg\,min}} \left[\ell(\mathbf{M}, \mathcal{S}, \mathcal{D}, \mathcal{R}) + \lambda R(\mathbf{M}) \right],$$

where

- $\ell(M, \mathcal{S}, \mathcal{D}, \mathcal{R})$ is a loss function that penalizes violated constraints,
- R(M) is some regularizer on M,
- and $\lambda \ge 0$ is the regularization parameter.

General formulation

Given a metric, find its parameters $\boldsymbol{\mathsf{M}}^*$ as

$$\mathbf{M}^* = \underset{\mathbf{M} \succeq \mathbf{0}}{\operatorname{arg\,min}} \left[\ell(\mathbf{M}, \mathcal{S}, \mathcal{D}, \mathcal{R}) + \lambda R(\mathbf{M}) \right],$$

where

- $\ell(M, S, D, R)$ is a loss function that penalizes violated constraints,
- R(M) is some regularizer on M,
- and $\lambda \ge 0$ is the regularization parameter.

State of the art methods essentially differ by the choice of **constraints**, **loss function** and **regularizer** on **M**.

Loss functions for binary classification

Sebban (LAHC)

Metric Learning

Regularization

- The mixed $L_{2,1}$ norm on matrix **M** is defined as $\|\mathbf{M}\|_{2,1} = \sum_{i=1}^{d} \|\mathbf{M}_i\|_2$.
- The nuclear norm (also called trace norm): \mathbf{M} : $\|\mathbf{M}\|_* = tr(\mathbf{M})$.

Sebban (LAHC)

LMNN (Weinberger et al. 2005)

Main Idea

Define constraints tailored to k-NN in a local way: the k nearest neighbors should be of same class ("target neighbors"), while examples of different classes should be kept away ("impostors"):

 $\begin{aligned} \mathcal{S} &= \{ (\mathbf{x}_i, \mathbf{x}_j) : y_i = y_j \text{ and } \mathbf{x}_j \text{ belongs to the } k \text{-neighborhood of } \mathbf{x}_i \}, \\ \mathcal{R} &= \{ (\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k) : (\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{S}, y_i \neq y_k \}. \end{aligned}$

Sebban (LAHC)

Metric Learning

LMNN (Weinberger et al. 2005)

Formulation

$$\min_{\mathsf{M} \succeq 0} \quad (1-\mu) \sum_{(\mathbf{x}_{i}, \mathbf{x}_{j}) \in \mathcal{S}} d_{\mathsf{M}}^{2}(\mathbf{x}_{i}, \mathbf{x}_{j}) + \mu \sum_{i, j, k} \xi_{ijk}$$

s.t.
$$d^2_{\mathsf{M}}(\mathbf{x}_{\mathbf{i}},\mathbf{x}_{\mathbf{k}}) - d^2_{\mathsf{M}}(\mathbf{x}_{\mathbf{i}},\mathbf{x}_{\mathbf{j}}) \ge 1 - \xi_{ijk} \qquad \forall (\mathbf{x}_{\mathbf{i}},\mathbf{x}_{\mathbf{j}},\mathbf{x}_{\mathbf{k}}) \in \mathcal{R},$$

where μ controls the "pull/push" trade-off.

Remarks

- Advantages: Convex, with a solver based on working set and subgradient descent. Can deal with millions of constraints and very popular in practice.
- Drawback: Subject to overfitting in high dimension.

ITML (Davis et al. 2007)

Information-Theoretical Metric Learning (ITML) introduces LogDet divergence regularization. This Bregman divergence on PSD matrices is defined as:

$$D_{ld}(\mathbf{M}, \mathbf{M_0}) = trace(\mathbf{MM_0}^{-1}) - \log \det(\mathbf{MM_0}^{-1}) - d.$$

where d is the dimension of the input space and M_0 is some PSD matrix we want to remain close to. ITML is formulated as follows:

$$\begin{split} \min_{\mathsf{M} \succeq 0} \quad & D_{ld}(\mathsf{M}, \mathsf{M}_0) + \gamma \sum_{i, j, k} \xi_{ij} \\ \text{s.t.} \quad & d_{\mathsf{M}}^2(\mathsf{x}_i, \mathsf{x}_j) \leq u + \xi_{ij} \qquad \forall (\mathsf{x}_i, \mathsf{x}_j) \in \mathcal{S} \\ & d_{\mathsf{M}}^2(\mathsf{x}_i, \mathsf{x}_j) \geq v - \xi_{ij} \qquad \forall (\mathsf{x}_i, \mathsf{x}_j) \in \mathcal{D}, \end{split}$$

The LogDet divergence is finite iff **M** is PSD.

Nonlinear metric learning The big picture

Nonlinear metric learning: 3 approaches

- Kernelization of linear methods.
- 2 Learning a nonlinear metric.
- Searning several local linear metrics.

Nonlinear metric learning Kernelization of linear methods

- Some algorithms have been shown to be kernelizable, but in general this is not trivial: a new formulation of the problem has to be derived, where interface to the data is **limited to inner products**, and sometimes a different implementation is necessary.
- When the number of training examples n is large, learning n^2 parameters may be intractable.

A solution: KPCA trick (Chatpatanasiri et al., 2010)

- Use KPCA (PCA in kernel space) to get a nonlinear but low-dimensional projection of the data.
- Then use unchanged algorithm!

Nonlinear metric learning Learning a nonlinear metric: GB-LMNN (Kedem et al. 2012)

Main idea

- Learn a nonlinear mapping ϕ to optimize the Euclidean distance $d_{\phi}(\mathbf{x}, \mathbf{x}') = \|\phi(\mathbf{x}) \phi(\mathbf{x}')\|_2$ in the transformed space.
- $\phi = \phi_0 + \alpha \sum_{t=1}^{T} h_t$, where ϕ_0 is the mapping learned by linear LMNN, and h_1, \ldots, h_T are gradient boosted regression trees.
- Intuitively, each tree divides the space into 2^{*p*} regions, and instances falling in the same region are translated by the same vector.

Nonlinear metric learning

Motivation

- Simple linear metrics perform well locally.
- Since everything is linear, can keep formulation convex.

M^2 -LMNN (Weinberger and Saul 2008,2009)

- Partition in C clusters (in a supervised or unsupervised way).
- C Mahalanobis distances are learned.

Pitfalls

- How to split the space?
- How to avoid a blow-up in number of parameters to learn, and avoid overfitting?
- How to obtain a proper (continuous) global metric?

Online learning

Warning

If the number of training constraints is **very large**, previous algorithms become huge, possibly **intractable optimization problems**.

One solution: online learning

- In online metric learning, the algorithm receives training pairs one at a time and updates the current hypothesis at each step.
- Often come with guarantees in the form of **regret bounds** stating that the accumulated loss suffered along the way is **not much worse than that of the best hypothesis chosen in hindsight**.

Online learning

Regret bound

A regret bound has the following general form:

$$\sum_{t=1}^{T} \ell(h_t, z_t) - \sum_{t=1}^{T} \ell(h^*, z_t) \le O(T),$$

where T is the number of steps, h_t is the hypothesis at time t and h^* is the best batch hypothesis.

Mahalanobis distance learning LEGO (Jain et al. 2008)

Formulation

At each step, receive $(\mathbf{x}_t, \mathbf{x}'_t, y_t)$ where y_t is the target distance between \mathbf{x}_t and \mathbf{x}'_t , and update as follows:

$$\mathbf{M}^{t+1} = \arg\min_{\mathbf{M}\succeq 0} D_{ld}(\mathbf{M}, \mathbf{M}^t) + \lambda \ell(\mathbf{M}, \mathbf{x}_t, \mathbf{x}_t', y_t),$$

where ℓ is a loss function (square loss, hinge loss...).

Remarks

- It turns out that the above update has a closed-form solution which maintains M ≥ 0 automatically.
- Can derive a regret bound.

Limitations of the state of the art ML algorithms

Algorithmic limitations

Drawbacks of Mahalanobis distance learning:

- Maintaining $\mathbf{M} \succeq \mathbf{0}$ is often costly, especially in high dimensions.
- Objects must have same dimension.
- Distance properties can be useful (e.g., for fast neighbor search), but restrictive. Evidence that our notion of (visual) similarity violates the triangle inequality (example below).

Similarity learning

Cosine similarity

The cosine similarity (widely used in data mining) measures the cosine of the angle between two instances, and can be computed as

$$\mathcal{K}_{cos}(\mathbf{x},\mathbf{x}') = \frac{\mathbf{x}^T \mathbf{x}'}{\|\mathbf{x}\|_2 \|\mathbf{x}'\|_2}.$$

Bilinear similarity

The bilinear similarity is related to the cosine but does not include normalization and is parameterized by a matrix \mathbf{M} :

$$K_{\mathsf{M}}(\mathsf{x},\mathsf{x}') = \mathsf{x}^{\mathsf{T}}\mathsf{M}\mathsf{x}',$$

where \mathbf{M} is not required to be PSD nor symmetric.

Limitations of the state of the art ML algorithms

Theoretical limitations

Establishing theoretical guarantees for the metric learning algorithms has so far received very little attention. However, we may be interested in theoretical results on:

- the **algorithm** which makes use of it ("plug and hope" strategy): generalization guarantees,
- and on the learned metric d_M itself (optimized w.r.t. training data): consistency guarantees.

Bellet, A., Habrard, A., and Sebban, M. *Similarity Learning for Provably Accurate Sparse Linear Classification*, ICML 2012.

Generalization Guarantees

Generalization guarantees for the classifier using the metric: (ϵ, γ, τ) -goodness

Definition (Balcan et al., 2008)

A similarity function $K \in [-1, 1]$ is (ϵ, γ, τ) -good w.r.t. to an indicator function R(x) defining a set of "reasonable points" if:

• A $1 - \epsilon$ probability mass of examples (x, y) satisfy:

$$\mathbb{E}_{(x',y')\sim P}\left[yy'K(x,x')|R(x')\right] \geq \gamma.$$

 $earlier{lem: Pr_{x'}[R(x')] \ge \tau. }$

 $\epsilon,\gamma,\tau\in[0,1]$

- The first condition requires that a 1 ε proportion of examples x are on average more similar to reasonable examples of the same class than to reasonable examples of the opposite class by a margin γ.
- The second condition means that at least a τ proportion of the examples are reasonable.

Strategy

If R is known, use K to map the examples to the space ϕ of "the similarity scores with the reasonable points" (similarity map).

Generalization guarantees for the classifier using the metric: (ϵ, γ, τ) -goodness

A trivial linear classifier

By definition of (ϵ, γ, τ) -goodness, we have a linear classifier in ϕ that achieves true risk ϵ at margin γ .

Sebban (LAHC)

Generalization guarantees for the classifier using the metric: (ϵ, γ, τ) -goodness

Theorem (Balcan et al., 2008)

If R is unknown, given K is (ϵ, γ, τ) -good and enough points to create a similarity map, with high probability there exists a linear separator α that has true risk ϵ at margin γ .

Question

Can we find this linear classifier in an efficient way?

Answer

Basically, yes: solve a Linear Program with 1-norm regularization. We get a sparse linear classifier.

$$\min_{\boldsymbol{\alpha}} \sum_{i=1}^{n} \left[1 - \sum_{j=1}^{n} \alpha_{j} y_{i} K(x_{i}, x_{j}) \right]_{+} + \lambda \|\boldsymbol{\alpha}\|_{1}$$

L_1 norm induces sparsity

SLLC (Bellet et al. 2012)

The performance of the linear classifier theoretically depends on how well the similarity function satisfies the definition of goodness.

$$\mathbb{E}_{(x',y')\sim P}\left[yy'K(x,x')|R(x')\right] \geq \gamma.$$

SLLC optimizes the empirical goodness of K over the training set.

Formulation of SLLC

$$\min_{\mathbf{M}\in\mathbb{R}^{d\times d}} \quad \frac{1}{n}\sum_{i=1}^{n} \left[1-y_{i}\frac{1}{\gamma|R|}\sum_{\mathbf{x}_{j}\in R}y_{j}K_{\mathbf{M}}(\mathbf{x}_{i},\mathbf{x}_{j})\right]_{+} \quad + \quad \beta\|\mathbf{M}\|_{\mathcal{F}}^{2},$$

where

$$K_{\mathsf{M}}(\mathbf{x},\mathbf{x}')=\mathbf{x}^{\mathsf{T}}\mathsf{M}\mathbf{x}'.$$

SLLC (Bellet et al. 2012)

Properties of SLLC

SLLC has a number of desirable properties:

- SLLC optimizes a link between the quality of the metric and the quality of the linear classifier.
- Unlike classic algorithms, which rely on pair or triplet-based constraints, SLLC satisfies constraints that are **defined over an** average of similarity scores.
- SLLC has **only one constraint per training example**, instead of one for each pair or triplet.
- We can derive consistency guarantees on the learned similarity.

Consistency Guarantees

Deriving consistency guarantees

Consistency guarantees for the learned metric: uniform stability

Definition (Uniform stability for metric learning)

A learning algorithm A has a **uniform stability** in κ/n , where $\kappa > 0$, if

$$\forall (\mathcal{T}, \mathbf{x}), \forall i, \sup_{\mathbf{x}_1, \mathbf{x}_2} |\ell(\mathcal{A}_{\mathcal{T}}, \mathbf{x}_1, \mathbf{x}_2) - \ell(\mathcal{A}_{\mathcal{T}^{i, \mathbf{x}}}, \mathbf{x}_1, \mathbf{x}_2)| \leq \frac{\kappa}{n},$$

where A_T is the metric learned by A from T, and $T^{i,\mathbf{x}}$ is the set obtained by replacing $\mathbf{x}_i \in T$ by a new example \mathbf{x} .

Theorem (Uniform stability bound)

For any algorithm A with uniform stability κ/n , with probability $1 - \delta$ over the random sample T, we have:

$$R^{\ell}(\mathcal{A}_{T}) \leq R_{T}^{\ell}(\mathcal{A}_{T}) + rac{2\kappa}{n} + (2\kappa + B)\sqrt{rac{\ln(2/\delta)}{2n}},$$

where B is a problem-dependent constant.

Stability of SLLC

Formulation of SLLC

$$\min_{\mathbf{M}\in\mathbb{R}^{d\times d}} \quad \frac{1}{n}\sum_{i=1}^{n} \left[1-y_{i}\frac{1}{\gamma|R|}\sum_{\mathbf{x}_{j}\in\mathcal{R}}y_{j}K_{\mathbf{M}}(\mathbf{x}_{i},\mathbf{x}_{j})\right]_{+} \quad + \quad \beta\|\mathbf{M}\|_{\mathcal{F}}^{2},$$

$$K_{\mathbf{M}}(\mathbf{x},\mathbf{x}')=\mathbf{x}^{\mathsf{T}}\mathbf{M}\mathbf{x}'.$$

Lemma

Let n and |R| be the number of training examples and reasonable points respectively, $|R| = \hat{\tau}n$ with $\hat{\tau} \in]0,1]$. SLLC has a uniform stability in $\frac{\kappa}{n}$ with

$$\kappa = rac{1}{\gamma}(rac{1}{eta\gamma}+rac{2}{\hat{ au}}),$$

where β is the regularization parameter and γ the margin.

Consistency guarantees of SLLC

Theorem

Let $\gamma > 0$, $\delta > 0$ and $n_T > 1$. With probability at least $1 - \delta$, for any model **M** learned with SLLC, we have:

$$\epsilon \leq \hat{\epsilon} + \frac{1}{n} \left(\frac{1}{\gamma} (\frac{1}{\beta\gamma} + \frac{2}{\hat{\tau}}) \right) + \left(\frac{1}{\gamma} (\frac{1}{\beta\gamma} + \frac{2}{\hat{\tau}}) + 1 \right) \sqrt{\frac{\ln 1/\delta}{2n}}$$

where:

•
$$\hat{\epsilon} = \frac{1}{n} \sum_{i=1}^{n} [1 - y_i \frac{1}{\gamma |R|} \sum_{k=1}^{|R|} y_k \mathcal{K}_{\mathsf{M}}(\mathsf{x}_i, \mathsf{x}_k)]_+.$$

• $\epsilon = \mathbb{E}_{(\mathsf{x}_i, y_i) \sim P} [1 - y_i \frac{1}{\gamma |R|} \sum_{k=1}^{|R|} y_k \mathcal{K}_{\mathsf{M}}(\mathsf{x}_i, \mathsf{x}_k)]_+.$

Experimental Results

Comparison between a kernelized version (using a KPCA) of SLLC and:

- Standard bilinear similarity.
- LMNN
- LMNN KPCA
- ITML
- ITML KPCA

Experiments

Experiments with linear classifiers

Dataset	Breast	lono.	Rings	Pima	Splice	Svmguide1	Cod-RNA
KI	96.57	89.81	100.00	75.62	83.86	96.95	95.91
	<i>20.39</i>	<i>52.93</i>	<i>18.20</i>	<i>25.93</i>	<i>362</i>	64	557
SLLC	96.90	93.25	100.00	75.94	87.36	96.55	94.08
	1.00	1.00	1.00	1.00	1	<i>8</i>	1
LMNN	96.81	90.21	100.00	75.15	85.61	95.80	88.40
	<i>9.98</i>	<i>13.30</i>	<i>18.04</i>	<i>69.71</i>	<i>315</i>	<i>157</i>	<i>61</i>
LMNN KPCA	96.01	86.12	100.00	74.92	86.85	96.53	95.15
	<i>8.46</i>	<i>9.96</i>	<i>8.73</i>	<i>22.20</i>	<i>156</i>	<i>82</i>	<i>591</i>
ITML	96.80	92.09	100.00	75.25	81.47	96.70	95.06
	<i>9.79</i>	<i>9.51</i>	<i>17.85</i>	<i>56.22</i>	<i>3</i> 77	<i>49</i>	<i>164</i>
ITML KPCA	96.23	93.05	100.00	75.25	85.29	96.55	95.14
	<i>17.17</i>	<i>18.01</i>	<i>15.21</i>	16.40	<i>287</i>	<i>89</i>	<i>206</i>

Experiments

< ≣ ▶43 / 46

- Scalability with both *n* and *d*
 - Optimiziation over the manifold of low-rank matrices [Cheng, 2013, Shalit et al., 2012].
 - Combination of simple classifiers [Kedem et al., 2012, Xiong et al., 2012].

• Scalability with both *n* and *d*

- Optimiziation over the manifold of low-rank matrices [Cheng, 2013, Shalit et al., 2012].
- Combination of simple classifiers [Kedem et al., 2012, Xiong et al., 2012].

• More theoretical understanding

- So far, only results for linear classification have been obtained [Bellet et al., 2012b, Guo and Ying, 2014].
- What about kNN classification, clustering or information retrieval?

• Scalability with both *n* and *d*

- Optimiziation over the manifold of low-rank matrices [Cheng, 2013, Shalit et al., 2012].
- Combination of simple classifiers [Kedem et al., 2012, Xiong et al., 2012].

• More theoretical understanding

- So far, only results for linear classification have been obtained [Bellet et al., 2012b, Guo and Ying, 2014].
- What about kNN classification, clustering or information retrieval?

Unsupervised metric learning

• What is a good metric for clustering: preliminary work on this question [Balcan et al., 2008b, Lajugie et al., 2014].

• Scalability with both *n* and *d*

- Optimiziation over the manifold of low-rank matrices [Cheng, 2013, Shalit et al., 2012].
- Combination of simple classifiers [Kedem et al., 2012, Xiong et al., 2012].

• More theoretical understanding

- So far, only results for linear classification have been obtained [Bellet et al., 2012b, Guo and Ying, 2014].
- What about kNN classification, clustering or information retrieval?

Unsupervised metric learning

• What is a good metric for clustering: preliminary work on this question [Balcan et al., 2008b, Lajugie et al., 2014].

• Adapting the metric to changing data

• Life Long learning (ERC grant C. Lampert).

A (first) quick advertisement...

Recent survey

There exist many other metric learning approaches. Most of them are discussed at more length in our recent survey:

• Bellet, A., Habrard, A., and Sebban, M. (2013). A Survey on Metric Learning for Feature Vectors and Structured Data. Technical report,

available at the following address: http://arxiv.org/abs/1306.6709

Experiments

A (second) quick advertisement...

Conférence francophone sur

l'Apprentissage automatique

Saint-Étienne, du 8 au 10 juillet 2014

http://cap2014.sciencesconf.org

Présidents du Comité Scientifique Marc SEBBAN - LaHC, Université de Saint-Étienne Ludoyie DENOYER - LIPé Université Paris 6

> Président du Comité d'Organisation Amaury HABRARD - LaHC, Université de Saint-Étienne

HackDay, le 7 Juillet 2014 http://hackday.lip6.fr

24h pour développer une application en apprentissage automatique

Conférenciers Invités

Francis BACH - INRIA, ENS Paris, France Hendrik BLOCKEEL - KU Leuven, Belgique

Dates importantes

- Ouverture de la soumission des articles : 1er mars 2014
- Clôture de la soumission des articles : 5 avril 2014
- ✓ Notification aux auteurs : 15 mai 2014
- ✓ Version finale 1^{er} inin 2014