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Problems

Learning from non-IID data

I Bipartite ranking and pairwise classification

I Similarity learning

I Classification of sequence data (mixing processes)

I Classification of connected webpages

I Active learning

I Covariate Shift

I . . .

Questions

I Algorithmic: how to deal with non-IIDness?

I Theoretical: what statistical guarantees can be exhibited?

I Algorithmic and theoretical: may theoretical results motivate new
algorithms? vice versa?
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Concrete Examples

Virtual Screening

I A scoring function f :M→ R
that gives higher scores to
toxic molecules

I Maximization of the Auc

Learning f

A usual strategy is to learn a pairwise binary classifier on (toxic, non toxic)
pairs (with default class +1)
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Concrete Examples

Brain computer Interface: P300 speller

(from A. Rakotomamonjy)

Goal
Detect P300’s in EEG signal.

Nature of non-IIDness

I Drifting distribution (patient
adaptation)

I Change of sampling
distribution (covariate shift)
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Concrete Examples

Edge prediction, relational learning, etc.
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Interdependencies

I In training data

I In test data

I In general: a problem not obvious to formalize in the statistical learning
framework
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Concrete Examples

Robot navigation

Temporal dependencies (cf. mixing processes)

I The robot has to make a decision (e.g. {stop, right, left,

forward}) at each time step t according to its environment Xt

I Xt depends on the past Xt′ ’s (t′ < t) with a fading influence between the
Xt ’s over time (cf. mixing processes)
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Concrete Examples

Covariate Shift
“Learning when training and test distributions are different” (NIPS 06 wshp)

(from Storkey and Sugiyama [Storkey and Sugiyama, 2007])

Results: Ptrain(Y |x) = Ptest(Y |x) and ptrain(X ) 6= ptest(X )

Learning setting: Strain = {(Xi ,Yi )}ni=1, Stest = {Xi}mi=1

I Importance Sampling (reweighting examples) by an estimation of
β(X ) = ptest(X )/ptrain(X )

I Algorithmic and consistency results
[Storkey and Sugiyama, 2007, Shimodaira, 2000, Smola et al., 2006]
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IID Setting (supervised learning)

Notation

I X : input space Rd

I Y: target space {−1,+1}
I T : output space T = R
I D: probability distribution over X × Y (fixed and unknown)

I S = {(Xi ,Yi )}ni=1 IID sample ∼ D

I H ⊆ T X : function class

Loss function and risks

I ` : Y × T → R
I Empirical risk of h

R̂`(h, S) =
1

n

n∑
i=1

`(Yi , h(Xi ))

I True risk of h
R`(h,D) = EX ,Y∼D`(Y , h(X ))
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IID Setting (supervised learning)

Example (Classification)

I 0-1 loss: `(y , t) = I [yt < 0]

I hinge loss: `(y , t) = |1− yt|+
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Example (Regression)

I Square loss: `(y , t) = (y − t)2

I Absolute loss: `(y , t) = |y − t|
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IID Setting (supervised learning)

Ultimate goal

Find a predictor with smallest risk within H

h∗ = arg min
hH

R`(h,D)

Key ingredients to devise and analyze learning procedures

I Identical distribution

R`(h,D) = ESR`(h,S) (= ES
1

n

n∑
i=1

`(Yi , h(Xi )))

I Relevant concentration inequality (usually requires some form of
indepedence)

I Capacity measure of H or of the class of hypotheses generated by the
learning algorithm (cf. sample compression schemes, stability, robustness,
. . . )
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A Control on the Generalization Error

Targeted result

∀δ ∈ (0, 1],, with probability at least 1− δ over the draw of S :

∀h ∈ H, EXY `(h,X ,Y ) ≤ 1

n

n∑
i=1

`(Yi , h(Xi )) + ε

(
1

δ
,

1

n
, . . .

)
.

For binary classification (` = `0−1): with prob. 1− δ

∀h ∈ H, PXY (h(X ) 6= Y ) ≤ R̂(h,S) + ε

(
1

δ
,

1

n
, . . .

)
.

where R̂(h, S) = 1
n

∑n
i=1 I [h(Xi ) 6= Yi ]

On ε

I decreases when n increases and when δ increases

I usually contains something related to the capacity of H
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∀h ∈ H, PXY (h(X ) 6= Y ) ≤ R̂(h,S) + ε

(
1

δ
,

1

n
, . . .

)
.

where R̂(h, S) = 1
n

∑n
i=1 I [h(Xi ) 6= Yi ]

Many ways to get generalization bounds

I VC dimension-based arguments [Vapnik, 1998]

I PAC-Bayesian theory [McAllester, 1999]

I Algorithmic stability theory [Bousquet and Elisseeff, 2002]

I Rademacher-complexity based arguments (our focus)
[Bartlett and Mendelson, 2002]

I . . .
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Generalization bound when |H| < +∞

Bound
With prob. at least 1− δ,

∀h ∈ H, R(h) ≤ R̂(h,S) +

√
log |H|+ log 1

δ

2n
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Bound
With prob. at least 1− δ,
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√
log |H|+ log 1

δ

2n

Proof.
The proof hinges on Chernoff/Hoeffding concentration inequality: for
Z1, . . . ,Zn independent (and identically distributed) variables with range [0; 1]

P

(
EZ1 −

1

n

n∑
i=1

Zi ≥ ε

)
≤ exp(−2nε2)
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)
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Generalization bound when |H| < +∞

Bound
With prob. at least 1− δ,

∀h ∈ H, R(h) ≤ R̂(h,S) +

√
log |H|+ log 1

δ

2n

Keys

I Identical distribution: relation between R and R̂

I Independence: concentration inequality

I Finite number of hypotheses
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Rademacher-based Generalization Bound

Theorem (Rademacher generalization bound
[Bartlett and Mendelson, 2002, Shawe-Taylor and Cristianini, 2004])

∀δ ∈ [0, 1), with probability at least 1− δ, ∀h ∈ H,

PXY (Yh(X ) ≤ 0) ≤ R̂(h, S) +
R̂(H, S)

2
+ c

√
ln 4/δ

2n

where c > 0 and R̂(H, S) = Eσ sup
h∈H

2

n

n∑
i=1

σih(Xi ) is the empirical Rademacher

complexity of H with respect to S .
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n∑
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σih(Xi ) is the empirical Rademacher

complexity of H with respect to S .

Theorem (Bounded Difference Inequality [McDiarmid, 1989])

Assume that f : X n → R satisfies
sup

x1,...,xn,x
′
i
∈X

∣∣f (x1, . . . , xn)− f (x1, . . . , xi−1, x
′
i , xi+1, . . . , xn)

∣∣ ≤ ci , ∀i = 1, . . . , n

If X1, . . . ,Xn are independent r.v.’s taking values in X , then, for every t > 0,

P {Ef (X1, . . . ,Xn)− f (X1, . . . ,Xn) ≥ t} ≤ exp

(
−2t2/

n∑
i=1

c2
i

)

P {f (X1, . . . ,Xn)− Ef (X1, . . . ,Xn) ≥ t} ≤ exp

(
−2t2/

n∑
i=1

c2
i

)
.
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Rademacher complexity of H

Definition (Rademacher complexity of H)

Rn(H) = ESσ sup
h∈H

2

n

n∑
i=1

σih(Xi ),

where σ = {σ1, . . . , σn}, and P(σi = +1) = P(σi = −1) = 1/2.

On Rn

I It measures the richness of the class H
I Says how well H is capable of correlating with randomly assigned labels

I The marginal distribution over X is directly taken into account

I It cannot be directly computed. . .
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Rademacher complexity of H

Definition (Rademacher complexity of H)

Rn(H) = ESσ sup
h∈H

2

n

n∑
i=1

σih(Xi ),

where σ = {σ1, . . . , σn}, and P(σi = +1) = P(σi = −1) = 1/2.

Definition (Empirical Rademacher complexity R̂(H,S))

R̂(H, S) = Eσ sup
h∈H

2

n

n∑
i=1

σih(Xi )

Concentration of R̂(H,S)

Using McDiarmid inequality, with prob. at least 1− δ

R(H) ≤ R̂(H,S) + c

√
log 2/δ

2n
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Proof of the Rademacher-based bound

For all h (simultaneously), the following trivially holds

R(h)− R̂(h, S) ≤ sup
h∈H

(
R(h)− R̂(h, S)

)
= sup

h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi ) 6= Yi ]

)

and we may want to take care of the upper bound.
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We thus have∣∣H((x1, y1), . . . , (xn, yn))− H((x1, y1), . . . , (x ′i , y

′
i ) . . . , (xn, yn))
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I [h(Xi ) 6= Yi ]
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√
log 1/δ

2n
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Proof of the Rademacher-based bound (we don’t back down)

We now have

R(h)− R̂(h,S) ≤δ ES sup
h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi ) 6= Yi ]

)
+

√
log 1/δ

2n

and the crux is, again, to work out the upper bound.
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Proof of the Rademacher-based bound (almost there)

We are at the point where

R(h)− R̂(h,S) ≤δ ESσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi ) 6= Yi ] +

√
log 1/δ

2n

and the upper bound might be tamed as follows.
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Proof of the Rademacher-based bound (we are done)

Previous calculations amount to

R(h)− R̂(h, S) ≤δ
Rn(H)

2
+

√
log 1/δ

2n
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+

√
log 1/δ

2n

This finally gives, using the concentration of R̂(H, S)

R(h)− R̂(h, S) ≤δ
R̂(H, S)

2
+

√
log 2/δ

2n

Critical observations

I Identical distributions is pivotal to relate ES to EXYY

I It is important as well for the double-sample trick

I Independence is a necessary condition for the proof (even though there are
concentration inequalities for dependent data)

I On a side note:
I R̂(H,S) can be computed from data
I there are local versions of Rademacher complexities [Bartlett et al., 2005]

15 / 38



Beyond IIDness

Estimated relevance

True relevance
f(x) ϵ [0,1]

Study these first in lab

xi

f(xi)

- - - + + - + - +

1

2 3

45

6 7

8

?

?

?

?
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Overview and Motivating Examples

Recall: the Blessings of IIDness
Setting
A Control on the Generalization Error

Warming up: |H| < +∞
Rademacher-based Generalization Bound

Beyond IIDness

Non-Stationarity
(Non-)assumptions
Quick Reminder on Kernels and RKHS
Forgetting is Nice when Online Learning with Kernels
Sequential Rademacher Complexity

Non-Independence
Mixing Processes
Dependent Data

Conclusion
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Non-stationarity

(Non-)assumptions

I Training data: Z1, . . . ,Zn observations not identically distributed;

I Test data: Z ′1, . . . ,Z
′
m observations not identically distributed.

Formal frameworks

I Learning from noisy data: privacy learning, semi-supervised learning,. . .

I Transfer learning
I Drifting distributions

I switching regimes
I smoothly changing parameterized distributions

I Online learning (with adversarial oracle)
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Quick Reminder on Kernels

Kernel Trick Basics

We are happy if we know k : X × X → R such that k(x , x ′) = 〈φ(x), φ(x ′)〉
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Quick Reminder on Kernels

RKHS
Given a positive kernel k, the associated RKHS is the Hilbert space

H =

{
f : f =

n∑
i=1

αik(·, xi ), xi ∈ X

}
,

such that for f =
∑n

i=1 αik(·, xi ), g =
∑m

j=1 βjk(·, zj),

〈f , g〉 =
∑
ij

αiβjk(xi , zj).

Mapping φ might be thought of as φ(x) = k(·, x).
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αik(·, xi ), xi ∈ X

}
,

such that for f =
∑n

i=1 αik(·, xi ), g =
∑m

j=1 βjk(·, zj),

〈f , g〉 =
∑
ij

αiβjk(xi , zj).

Mapping φ might be thought of as φ(x) = k(·, x).

Evaluation operator k(·, x)

With the definition of H, it comes that ∀h ∈ H:

∀x ∈ X , h(x) = 〈h, k(·, x)〉.
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Online Learning

General scheme for online learning,
[Cesa-Bianchi and Lugosi, 2006, Shalev-Shwartz, 2007]

(x1, y1), . . . , (xt , yt), . . . data stream

I initialize h0

I Repeat
I predict ŷt = ht−1(xt)
I receive correct target ŷt
I incur loss `t = `(yt , ŷt , ht−1, xt)
I adjust ht−1 → ht using {`t , yt , ŷt , ht−1, xt}
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I Repeat
I predict ŷt = ht−1(xt)
I receive correct target ŷt
I incur loss `t = `(yt , ŷt , ht−1, xt)
I adjust ht−1 → ht using {`t , yt , ŷt , ht−1, xt}

Example (The Immortal Perceptron [Block, 1962, Novikoff, 1963])

Update of wt when wt−1 errs on (xt , yt):

wt ← wt−1 + ytxt

I Second-Order Perceptron [Cesa-Bianchi and Lugosi, 2006]

I Ultraconservative Algorithms [Crammer and Singer, 2003]

I Passive-Aggressive Learning [Crammer et al., 2006]

I . . .
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(x1, y1), . . . , (xt , yt), . . . data stream

I initialize h0

I Repeat
I predict ŷt = ht−1(xt)
I receive correct target ŷt
I incur loss `t = `(yt , ŷt , ht−1, xt)
I adjust ht−1 → ht using {`t , yt , ŷt , ht−1, xt}

Example (Stochastic Optimization)

I Pegasos [Shwartz et al., 2007, Shalev-Shwartz et al., 2011]

I Stochastic Gradient Descent [Kivinen et al., 2010, Bordes et al., 2005]

I . . .
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Online Learning

General scheme for online learning,
[Cesa-Bianchi and Lugosi, 2006, Shalev-Shwartz, 2007]

(x1, y1), . . . , (xt , yt), . . . data stream

I initialize h0

I Repeat
I predict ŷt = ht−1(xt)
I receive correct target ŷt
I incur loss `t = `(yt , ŷt , ht−1, xt)
I adjust ht−1 → ht using {`t , yt , ŷt , ht−1, xt}

Example (Winnow algorithm [Littlestone, 1988])

Update of wt when wt−1 errs on (xt , yt):

wt ∝ wt−1 exp(ηytxt)
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Online Learning

General scheme for online learning,
[Cesa-Bianchi and Lugosi, 2006, Shalev-Shwartz, 2007]

(x1, y1), . . . , (xt , yt), . . . data stream

I initialize h0

I Repeat
I predict ŷt = ht−1(xt)
I receive correct target ŷt
I incur loss `t = `(yt , ŷt , ht−1, xt)
I adjust ht−1 → ht using {`t , yt , ŷt , ht−1, xt}

Example (Recursive Least Squares / Optimal Control)

wt ← wt−1 + Atxt

I Online Kernel Recursive Least Squares [Engel et al., 2003]

I Sparse Online Gaussian Processes [Csato and Opper, 2002]

I . . .
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Online Learning

General scheme for online learning,
[Cesa-Bianchi and Lugosi, 2006, Shalev-Shwartz, 2007]

(x1, y1), . . . , (xt , yt), . . . data stream

I initialize h0

I Repeat
I predict ŷt = ht−1(xt)
I receive correct target ŷt
I incur loss `t = `(yt , ŷt , ht−1, xt)
I adjust ht−1 → ht using {`t , yt , ŷt , ht−1, xt}

Example (Bandits)

I Thompson Sampling [Thompson, 1933, Chapelle and Li, 2012]

I UCB, UCT and variants [Bubeck and Cesa-Bianchi, 2012, Munos, 2014]

I Exp3, and variants [Auer et al., 2002]

I . . .

20 / 38



Forgetting is Nice when Online Learning with Kernels

Study of Online Learning with Kernels of [Kivinen et al., 2010]

I Target: a kernel classifier h =
∑n

i=1 αik(·, x)

I Philosophical update when processing (xt , yt) at time t

ht ← βtht−1 + αtk(·, xt)
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Drawbacks

I The kernel expansion grows with time (and so do prediction time and
storage)

I There is no recovery of the algorithm to change of distribution (old
examples have ‘too much weight’)
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I Target: a kernel classifier h =
∑n

i=1 αik(·, x)

I Philosophical update when processing (xt , yt) at time t

ht ← βtht−1 + αtk(·, xt)

Drawbacks

I The kernel expansion grows with time (and so do prediction time and
storage)

I There is no recovery of the algorithm to change of distribution (old
examples have ‘too much weight’)

Solution

I Implement a strategy to forget old information

I Do it so the regret of the algorithm is controlled
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Forgetting is Nice when Online Learning with Kernels

Study of Online Learning with Kernels of [Kivinen et al., 2010]

I Target: a kernel classifier h =
∑n

i=1 αik(·, x)

I Philosophical update when processing (xt , yt) at time t

ht ← βtht−1 + αtk(·, xt)

Many related works

I Kernel Perceptron [Shawe-Taylor and Cristianini, 2004], Passive-Aggressive
Learning [Crammer et al., 2006], Pegasos
[Shwartz et al., 2007, Shalev-Shwartz et al., 2011]

I Budget online learning: Budget Perceptron [Crammer et al., 2003],
Forgetron [Dekel et al., 2008], Last Recent Budget
Perceptron [Cavallanti et al., 2007],
Projectron [Orabona and Keshet, 2008]
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Norma [Kivinen et al., 2010]

Setting

I Stream of data (x1, y1), . . . , (xt , yt), . . .

I In the hindsight, a batch procedure

h = arg min
f∈H

λ

2
‖f ‖2 +

1

n

n∑
t=1

`(f (xt), yt),

where ` is some convex loss function and λ > 0.

22 / 38



Norma [Kivinen et al., 2010]

A stochastic (sub-)gradient descent procedure

General update:
ht ← ht−1 − η∇f |f =ht−1 Rt(f , (xt , yt))

for

Rt(f , (xt , yt)) =
λ

2
‖f ‖2 + `(f (xt), yt)

and (xt , yt) ‘randomly’ chosen.
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2
‖f ‖2 + `(f (xt), yt)

and (xt , yt) ‘randomly’ chosen.

Working out ∇f Rt(f , (xt , yt))

Thanks to ‖f ‖2 = 〈f , f 〉 and f (x) = 〈f , k(·, x)〉, we have

∇f Rt(f , (xt , yt)) = λf +∇f ` (〈f , k(·, xt)〉, yt)

= λf + ∂`(〈f , k(·, xt)〉, yt)k(·, xt)
= λf + ∂`(f (xt), yt)k(·, xt)

where ∂` denotes the derivative (or subderivative) of ` wrt its first variable

22 / 38



Norma [Kivinen et al., 2010]

A stochastic (sub-)gradient descent procedure

General update:
ht ← ht−1 − η∇f |f =ht−1 Rt(f , (xt , yt))

for

Rt(f , (xt , yt)) =
λ

2
‖f ‖2 + `(f (xt), yt)

and (xt , yt) ‘randomly’ chosen.

Working out ∇f Rt(f , (xt , yt))

Thanks to ‖f ‖2 = 〈f , f 〉 and f (x) = 〈f , k(·, x)〉, we have

∇f Rt(f , (xt , yt)) = λf +∇f ` (〈f , k(·, xt)〉, yt)
= λf + ∂`(〈f , k(·, xt)〉, yt)k(·, xt)

= λf + ∂`(f (xt), yt)k(·, xt)

where ∂` denotes the derivative (or subderivative) of ` wrt its first variable

22 / 38



Norma [Kivinen et al., 2010]

A stochastic (sub-)gradient descent procedure

General update:
ht ← ht−1 − η∇f |f =ht−1 Rt(f , (xt , yt))

for

Rt(f , (xt , yt)) =
λ

2
‖f ‖2 + `(f (xt), yt)

and (xt , yt) ‘randomly’ chosen.

Working out ∇f Rt(f , (xt , yt))

Thanks to ‖f ‖2 = 〈f , f 〉 and f (x) = 〈f , k(·, x)〉, we have

∇f Rt(f , (xt , yt)) = λf +∇f ` (〈f , k(·, xt)〉, yt)
= λf + ∂`(〈f , k(·, xt)〉, yt)k(·, xt)
= λf + ∂`(f (xt), yt)k(·, xt)

where ∂` denotes the derivative (or subderivative) of ` wrt its first variable

22 / 38



Norma [Kivinen et al., 2010]

Update

We have

ht = ht−1 − η∇f |f =ht−1 Rt(f , (xt , yt))

= ht−1 − η [λht−1 + ∂`(ht−1(xt), yt)k(·, xt)]

= (1− λη)ht−1−η∂`(ht−1(xt), yt)︸ ︷︷ ︸
αt
t

k(·, xt)
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Update
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= ht−1 − η [λht−1 + ∂`(ht−1(xt), yt)k(·, xt)]

= (1− λη)ht−1−η∂`(ht−1(xt), yt)︸ ︷︷ ︸
αt
t

k(·, xt)

Compact representation

At time t,

ht =
t∑
τ=1

αt
τk(·, xτ )

where (by induction, with h0 = 0)

αt
τ =

{
−η∂`(ht−1(xt), yt) if τ = t
(1− ηλ)t−ταττ otherwise
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Compact representation

At time t,

ht =
t∑
τ=1

αt
τk(·, xτ )

where (by induction, with h0 = 0)

αt
τ =

{
−η∂`(ht−1(xt), yt) if τ = t
(1− ηλ)t−ταττ otherwise

Observations

I If 0 < 1− ηλ < 1, the weights of old examples decrease exponentially fast
I This calls for a (smooth) truncation procedure motivated by

I numerical representation purposes
I adaptation purposes
I compactness purposes
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Norma [Kivinen et al., 2010]

Compact representation

At time t,

ht =
t∑
τ=1

αt
τk(·, xτ )

where (by induction, with h0 = 0)

αt
τ =

{
−η∂`(ht−1(xt), yt) if τ = t
(1− ηλ)t−ταττ otherwise

Theorem (Truncation error, smooth forgetting of old examples)

If the loss function is such that |∂z`(z , y)| ≤ C, ‖k‖ ≤ X and

htrunc
t =

t∑
i=max(1,t−τ)

αt
i k(·, xi ),

then ∥∥ht − htrunc
t

∥∥ ≤ (1− ηλ)τCX/λ
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Norma [Kivinen et al., 2010]

A Controlled Drifting Class of Sequence of Predictors

G(B,D1,D2) =

{
(g1, . . . , gt) :

∑
τ

‖gτ − gτ+1‖ ≤ D1,
∑
τ

‖gτ − gτ+1‖2 ≤ D2, ‖gτ‖ ≤ B

}

Cumulative Loss Lcum

Lcum(h,S) =
∑

t `(ht−1(xt), yt),
where h = (h1, . . . , ht).

Theorem (Mistake Bound of Norma with Non-Stationary Targets)

Suppose that:

I `(h(x), y) = max(0, ρ− yh(x)) for ρ > 0

I ∃g ∈ G(B,D1,D2)

Then there exists right choices for η and λ such that∣∣∣∣ {1 ≤ τ ≤ t : yτhτ−1(xτ ) ≤ ρ}
∣∣∣∣ ≤ K(η, λ, ρ,D1,D2,B)
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Then there exists right choices for η and λ such that∣∣∣∣ {1 ≤ τ ≤ t : yτhτ−1(xτ ) ≤ ρ}
∣∣∣∣ ≤ K(η, λ, ρ,D1,D2,B)

Proof.
Just kidding
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What to take home from online learning with kernels

Algorithmically

I Many algorithms for online learning

I They implement some sort of forgetting to be able to adapt to drifting
distribution.
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I They implement some sort of forgetting to be able to adapt to drifting
distribution.

Regret, Mistake bounds

I Natural way to analyze online learning algorithms: mistake bounds, regret

I It is known that small regret gives good generalization error under the
right assumptions [Cesa-Bianchi et al., 2004]

Where is Rademacher???
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Online Learning and Sequential Rademacher Complexity

Issues

I seems that the tools used to analyze online learning algorithm are very
different from those for batch algorithm

I not easy to take advantage of things made in one field in the other field

I connections between the learning approach is not straightforward
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Online Learning and Sequential Rademacher Complexity

Issues

I seems that the tools used to analyze online learning algorithm are very
different from those for batch algorithm

I not easy to take advantage of things made in one field in the other field

I connections between the learning approach is not straightforward

A beautiful contribution to address these issues
Work of [Rakhlin et al., 2010a, Rakhlin et al., 2010b]. One of the pivotal
notion: Sequential Rademacher Complexity (where xτ : {±1}τ → X )

Rt(H) = sup
x

Eε

[
sup
h∈H

t∑
τ=1

ετ f (xτ (ε))

]
,

(picture from Rakhlin’s poster)
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Mixing processes

Setting

I Z = {Zt}+∞
t=−∞ stationary: for any t and m, k ≥ 0, the random

subsequences (Zt , . . . ,Zt+m) and (Zt+k , . . . ,Zt+m+k) are identically
distributed

I The dependencies are fading over time, e.g., φ-mixing process:

ϕ(k) = sup
n,A∈σ+∞

n+k
,B∈σn

−∞

|P [A|B]− P [A]| .

Z is ϕ-mixing if ϕ(k)→ 0 as k → 0
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t=−∞ stationary: for any t and m, k ≥ 0, the random

subsequences (Zt , . . . ,Zt+m) and (Zt+k , . . . ,Zt+m+k) are identically
distributed

I The dependencies are fading over time, e.g., φ-mixing process:

ϕ(k) = sup
n,A∈σ+∞

n+k
,B∈σn

−∞

|P [A|B]− P [A]| .

Z is ϕ-mixing if ϕ(k)→ 0 as k → 0

Theorem
([Kontorovich and Ramanan, 2008, Mohri and Rostamizadeh, 2008])

Let ψ : Um → R be a function defined over a countable space U , and X be a
stationary ϕ mixing process. If ψ is l -Lipschitz with respect to the Hamming
metric for some l > 0, then the following holds for all t > 0:

PX [|ψ(X )− Eψ(X )| > t] ≤ 2 exp

[
− t2

2ml2‖Λm‖2
∞

]
, (1)

where ‖Λm‖∞ ≤ 1 + 2
∑m

k=1 ϕ(k).
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Setting

I Z = {Zt}+∞
t=−∞ stationary: for any t and m, k ≥ 0, the random

subsequences (Zt , . . . ,Zt+m) and (Zt+k , . . . ,Zt+m+k) are identically
distributed

I The dependencies are fading over time, e.g., φ-mixing process:

ϕ(k) = sup
n,A∈σ+∞

n+k
,B∈σn

−∞

|P [A|B]− P [A]| .

Z is ϕ-mixing if ϕ(k)→ 0 as k → 0

Recent results

I Stability bound for β- and φ-mixing processes
[Mohri and Rostamizadeh, 2008]

I Rademacher complexity fpr β-mixing processes
[Mohri and Rostamizadeh, 2009]

I Consistency of learning in α-mixing non stationary processes
[Steinwart et al., 2009]

I . . .
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Interdependent and Identically Distributed Data

Basic assumptions

I Ztrain = {Zi}mi=1 distributed according to Dm

I p(Ztrain) 6=
∏m

i=1 p(Zi )

I ptrain(Zi ) = ptrain(Z) = ptest(Z) (similar to a stationarity condition)

I Goal: control the risk of a learned function wrt ptest(Z)

Illustration

Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24
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Graph Fractional Chromatic Number

Definition (Dependency Graph)

Let Z = {Zi}mi=1 be a set of r.v. taking values in Z. The dependency graph
Γ(Z) of Z is such that the vertices of Γ(Z) are {1, . . . ,m} and:

i ∼ j ⇔ p(Zi ,Zj) 6= p(Zi )p(Zj).

Definition (Fractional Covers, [Schreinerman and Ullman, 1997])

Let Γ = (V ,E) be an undirected graph, with V = {1, . . . ,m}.
I A cover C = {Cj}nj=1 of Γ, with Cj ⊆ V , is such that no two nodes in Cj

are connected

I A fractional cover C = {(Cj , ωj)}nj=1 is a slightly refined version of a cover
which assigns weights to each element of C

Finding a minimal (fractional) cover amounts to finding a minimal coloring of Γ

χ(Γ) (χ∗(Γ)) is the (fractional) chromatic number of Γ
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Graph Fractional Chromatic Number

Definition (Dependency Graph)

Let Z = {Zi}mi=1 be a set of r.v. taking values in Z. The dependency graph
Γ(Z) of Z is such that the vertices of Γ(Z) are {1, . . . ,m} and:

i ∼ j ⇔ p(Zi ,Zj) 6= p(Zi )p(Zj).

Property on χ(Γ) and χ∗(Γ)[Schreinerman and Ullman, 1997]

Let Γ = (V ,E) be a graph. Let c(Γ) be the clique number of Γ. Let ∆(Γ) be
the maximum degree of a vertex in Γ. The following holds

1 ≤ c(Γ) ≤ χ∗(Γ) ≤ χ(Γ) ≤ ∆(Γ) + 1.

In addition, 1 = c(Γ) = χ∗(Γ) = χ(Γ) = ∆(Γ) + 1 if and only if Γ is totally
disconnected.

On the (fractional) chromatic number

I Computing χ and χ∗ is an NP-hard problem, but. . .

I we will consider instances of graphs for which they can be computed
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Graph Fractional Chromatic Number

Definition (Dependency Graph)

Let Z = {Zi}mi=1 be a set of r.v. taking values in Z. The dependency graph
Γ(Z) of Z is such that the vertices of Γ(Z) are {1, . . . ,m} and:

i ∼ j ⇔ p(Zi ,Zj) 6= p(Zi )p(Zj).

Example: Bipartite Ranking

Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

c = χ∗ = χ = 4

Usefulness of covers
A (fractional) cover of minimal weight breaks a set of dependent r.v.’s into a
minimal set of (large) subsets of independent r.v.’s
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Concentration Inequalities

Theorem (McDiarmid’s inequality for dependent variables)

With mild assumptions as so that Z = f (X1, . . . ,XN) decomposes according to
a fractional cover of X1, . . . ,XN ., the following concentration inequalities hold:

P(Z − EZ ≥ ε) ≤ exp

{
−Nε2

4χf

}
P(EZ − Z ≥ ε) ≤ exp

{
−Nε2

4χf

}
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Concentration Inequalities

Theorem (Bennett’s Inequality for Dependent Variables)

Suppose some mild assumptions hold, with Z = f (X1, . . . ,XN) which
decomposes according to a fractional cover of X1, . . . ,XN . We have the
following results:

I for all t ≥ 0

P(Z ≥ EZ + t) ≤ exp

(
− v

χf
h

(
4t

5v

))
,

with h(x) = (1 + x) log(1 + x)− x and v
.

= (1 + b)EZ + Nσ2

I for all t ≥ 0

P
(

Z ≥ EZ +
√

2cvt +
ct

3

)
≤ e−t

with c
.

= 25χ/16.

Notes

I secret tool to get these concentration inequalities

I Rademacher-based bound on generalization can be obtained... and more
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What to take home

IID

I Much has been done in the field of IID learning

I This assumption allows one to get strong generalization results

Non-IIDness

I No agreed-upon parametrization of non-stationarity

I A lot of work to do in online learning

I Nice tools from graph theory and concentration inequality for the
dependent case
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