
Non-IID: non-stationnarité et dépendances

Liva Ralaivola, QARMA

EPAT’14: École de Printemps sur l’Apprentissage arTificiel

11 juin 2014

1 / 38

Outline

Overview and Motivating Examples

Recall: the Blessings of IIDness
Setting
A Control on the Generalization Error

Warming up: |H| < +∞
Rademacher-based Generalization Bound

Beyond IIDness

Non-Stationarity
(Non-)assumptions
Quick Reminder on Kernels and RKHS
Forgetting is Nice when Online Learning with Kernels
Sequential Rademacher Complexity

Non-Independence
Mixing Processes
Dependent Data

Conclusion

2 / 38

Outline

Overview and Motivating Examples

Recall: the Blessings of IIDness
Setting
A Control on the Generalization Error

Warming up: |H| < +∞
Rademacher-based Generalization Bound

Beyond IIDness

Non-Stationarity
(Non-)assumptions
Quick Reminder on Kernels and RKHS
Forgetting is Nice when Online Learning with Kernels
Sequential Rademacher Complexity

Non-Independence
Mixing Processes
Dependent Data

Conclusion

3 / 38

Problems

Learning from non-IID data

I Bipartite ranking and pairwise classification

I Similarity learning

I Classification of sequence data (mixing processes)

I Classification of connected webpages

I Active learning

I Covariate Shift

I . . .

Questions

I Algorithmic: how to deal with non-IIDness?

I Theoretical: what statistical guarantees can be exhibited?

I Algorithmic and theoretical: may theoretical results motivate new
algorithms? vice versa?

4 / 38

Concrete Examples

Virtual Screening

I A scoring function f :M→ R
that gives higher scores to
toxic molecules

I Maximization of the Auc

Learning f

A usual strategy is to learn a pairwise binary classifier on (toxic, non toxic)
pairs (with default class +1)

5 / 38

Concrete Examples

Brain computer Interface: P300 speller

(from A. Rakotomamonjy)

Goal
Detect P300’s in EEG signal.

Nature of non-IIDness

I Drifting distribution (patient
adaptation)

I Change of sampling
distribution (covariate shift)

5 / 38

Concrete Examples

Edge prediction, relational learning, etc.

1

2 3

45

6 7

8

?

?

?

?

Interdependencies

I In training data

I In test data

I In general: a problem not obvious to formalize in the statistical learning
framework

5 / 38

Concrete Examples

Robot navigation

Temporal dependencies (cf. mixing processes)

I The robot has to make a decision (e.g. {stop, right, left,

forward}) at each time step t according to its environment Xt

I Xt depends on the past Xt′ ’s (t′ < t) with a fading influence between the
Xt ’s over time (cf. mixing processes)

5 / 38

Concrete Examples

Covariate Shift
“Learning when training and test distributions are different” (NIPS 06 wshp)

(from Storkey and Sugiyama [Storkey and Sugiyama, 2007])

Results: Ptrain(Y |x) = Ptest(Y |x) and ptrain(X) 6= ptest(X)

Learning setting: Strain = {(Xi ,Yi)}ni=1, Stest = {Xi}mi=1

I Importance Sampling (reweighting examples) by an estimation of
β(X) = ptest(X)/ptrain(X)

I Algorithmic and consistency results
[Storkey and Sugiyama, 2007, Shimodaira, 2000, Smola et al., 2006]

5 / 38

Outline

Overview and Motivating Examples

Recall: the Blessings of IIDness
Setting
A Control on the Generalization Error

Warming up: |H| < +∞
Rademacher-based Generalization Bound

Beyond IIDness

Non-Stationarity
(Non-)assumptions
Quick Reminder on Kernels and RKHS
Forgetting is Nice when Online Learning with Kernels
Sequential Rademacher Complexity

Non-Independence
Mixing Processes
Dependent Data

Conclusion

6 / 38

IID Setting (supervised learning)

Notation

I X : input space Rd

I Y: target space {−1,+1}
I T : output space T = R
I D: probability distribution over X × Y (fixed and unknown)

I S = {(Xi ,Yi)}ni=1 IID sample ∼ D

I H ⊆ T X : function class

Loss function and risks

I ` : Y × T → R
I Empirical risk of h

R̂`(h, S) =
1

n

n∑
i=1

`(Yi , h(Xi))

I True risk of h
R`(h,D) = EX ,Y∼D`(Y , h(X))

7 / 38

IID Setting (supervised learning)

Example (Classification)

I 0-1 loss: `(y , t) = I [yt < 0]

I hinge loss: `(y , t) = |1− yt|+

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 0 1 2 3 4

0-1 loss
Hinge loss

Example (Regression)

I Square loss: `(y , t) = (y − t)2

I Absolute loss: `(y , t) = |y − t|
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y-t

Square loss

Absolute loss

7 / 38

IID Setting (supervised learning)

Ultimate goal

Find a predictor with smallest risk within H

h∗ = arg min
hH

R`(h,D)

Key ingredients to devise and analyze learning procedures

I Identical distribution

R`(h,D) = ESR`(h,S) (= ES
1

n

n∑
i=1

`(Yi , h(Xi)))

I Relevant concentration inequality (usually requires some form of
indepedence)

I Capacity measure of H or of the class of hypotheses generated by the
learning algorithm (cf. sample compression schemes, stability, robustness,
. . .)

7 / 38

A Control on the Generalization Error

Targeted result

∀δ ∈ (0, 1],, with probability at least 1− δ over the draw of S :

∀h ∈ H, EXY `(h,X ,Y) ≤ 1

n

n∑
i=1

`(Yi , h(Xi)) + ε

(
1

δ
,

1

n
, . . .

)
.

For binary classification (` = `0−1): with prob. 1− δ

∀h ∈ H, PXY (h(X) 6= Y) ≤ R̂(h,S) + ε

(
1

δ
,

1

n
, . . .

)
.

where R̂(h, S) = 1
n

∑n
i=1 I [h(Xi) 6= Yi]

On ε

I decreases when n increases and when δ increases

I usually contains something related to the capacity of H

8 / 38

A Control on the Generalization Error

Targeted result

∀δ ∈ (0, 1],, with probability at least 1− δ over the draw of S :

∀h ∈ H, EXY `(h,X ,Y) ≤ 1

n

n∑
i=1

`(Yi , h(Xi)) + ε

(
1

δ
,

1

n
, . . .

)
.

For binary classification (` = `0−1): with prob. 1− δ

∀h ∈ H, PXY (h(X) 6= Y) ≤ R̂(h,S) + ε

(
1

δ
,

1

n
, . . .

)
.

where R̂(h, S) = 1
n

∑n
i=1 I [h(Xi) 6= Yi]

Many ways to get generalization bounds

I VC dimension-based arguments [Vapnik, 1998]

I PAC-Bayesian theory [McAllester, 1999]

I Algorithmic stability theory [Bousquet and Elisseeff, 2002]

I Rademacher-complexity based arguments (our focus)
[Bartlett and Mendelson, 2002]

I . . .

8 / 38

Generalization bound when |H| < +∞

Bound
With prob. at least 1− δ,

∀h ∈ H, R(h) ≤ R̂(h,S) +

√
log |H|+ log 1

δ

2n

9 / 38

Generalization bound when |H| < +∞

Bound
With prob. at least 1− δ,

∀h ∈ H, R(h) ≤ R̂(h,S) +

√
log |H|+ log 1

δ

2n

Proof.
The proof hinges on Chernoff/Hoeffding concentration inequality: for
Z1, . . . ,Zn independent (and identically distributed) variables with range [0; 1]

P

(
EZ1 −

1

n

n∑
i=1

Zi ≥ ε

)
≤ exp(−2nε2)

9 / 38

Generalization bound when |H| < +∞

Bound
With prob. at least 1− δ,

∀h ∈ H, R(h) ≤ R̂(h,S) +

√
log |H|+ log 1

δ

2n

Proof.
The proof hinges on Chernoff/Hoeffding concentration inequality: for
Z1, . . . ,Zn independent (and identically distributed) variables with range [0; 1]

P

(
EZ1 −

1

n

n∑
i=1

Zi ≥ ε

)
≤ exp(−2nε2)

So, for h ∈ H fixed (set Zi = I [h(Xi) 6= Yi])

P
(

R(h)− R̂(h, S) ≥ ε
)
≤ exp(−2nε2)

9 / 38

Generalization bound when |H| < +∞

Bound
With prob. at least 1− δ,

∀h ∈ H, R(h) ≤ R̂(h,S) +

√
log |H|+ log 1

δ

2n

Proof.
The proof hinges on Chernoff/Hoeffding concentration inequality: for
Z1, . . . ,Zn independent (and identically distributed) variables with range [0; 1]

P

(
EZ1 −

1

n

n∑
i=1

Zi ≥ ε

)
≤ exp(−2nε2)

So, for h ∈ H fixed (set Zi = I [h(Xi) 6= Yi])

P
(

R(h)− R̂(h, S) ≥ ε
)
≤ exp(−2nε2)

and, by the union bound (P(A1 ∨ . . . ∨ Am) ≤
∑m

i=1 P(Ai)),

P
(
∃h ∈ H : R(h)− R̂(h, S) ≥ ε

)
≤ |H| exp(−2nε2).

9 / 38

Generalization bound when |H| < +∞

Bound
With prob. at least 1− δ,

∀h ∈ H, R(h) ≤ R̂(h,S) +

√
log |H|+ log 1

δ

2n

Proof.
The proof hinges on Chernoff/Hoeffding concentration inequality: for
Z1, . . . ,Zn independent (and identically distributed) variables with range [0; 1]

P

(
EZ1 −

1

n

n∑
i=1

Zi ≥ ε

)
≤ exp(−2nε2)

So, for h ∈ H fixed (set Zi = I [h(Xi) 6= Yi])

P
(

R(h)− R̂(h, S) ≥ ε
)
≤ exp(−2nε2)

and, by the union bound (P(A1 ∨ . . . ∨ Am) ≤
∑m

i=1 P(Ai)),

P
(
∃h ∈ H : R(h)− R̂(h, S) ≥ ε

)
≤ |H| exp(−2nε2).

Solving for the upper bound to be equal to δ gives the result.

9 / 38

Generalization bound when |H| < +∞

Bound
With prob. at least 1− δ,

∀h ∈ H, R(h) ≤ R̂(h,S) +

√
log |H|+ log 1

δ

2n

Keys

I Identical distribution: relation between R and R̂

I Independence: concentration inequality

I Finite number of hypotheses

9 / 38

Rademacher-based Generalization Bound

Theorem (Rademacher generalization bound
[Bartlett and Mendelson, 2002, Shawe-Taylor and Cristianini, 2004])

∀δ ∈ [0, 1), with probability at least 1− δ, ∀h ∈ H,

PXY (Yh(X) ≤ 0) ≤ R̂(h, S) +
R̂(H, S)

2
+ c

√
ln 4/δ

2n

where c > 0 and R̂(H, S) = Eσ sup
h∈H

2

n

n∑
i=1

σih(Xi) is the empirical Rademacher

complexity of H with respect to S .

10 / 38

Rademacher-based Generalization Bound

Theorem (Rademacher generalization bound
[Bartlett and Mendelson, 2002, Shawe-Taylor and Cristianini, 2004])

∀δ ∈ [0, 1), with probability at least 1− δ, ∀h ∈ H,

PXY (Yh(X) ≤ 0) ≤ R̂(h, S) +
R̂(H, S)

2
+ c

√
ln 4/δ

2n

where c > 0 and R̂(H, S) = Eσ sup
h∈H

2

n

n∑
i=1

σih(Xi) is the empirical Rademacher

complexity of H with respect to S .

Theorem (Bounded Difference Inequality [McDiarmid, 1989])

Assume that f : X n → R satisfies
sup

x1,...,xn,x
′
i
∈X

∣∣f (x1, . . . , xn)− f (x1, . . . , xi−1, x
′
i , xi+1, . . . , xn)

∣∣ ≤ ci , ∀i = 1, . . . , n

If X1, . . . ,Xn are independent r.v.’s taking values in X , then, for every t > 0,

P {Ef (X1, . . . ,Xn)− f (X1, . . . ,Xn) ≥ t} ≤ exp

(
−2t2/

n∑
i=1

c2
i

)

P {f (X1, . . . ,Xn)− Ef (X1, . . . ,Xn) ≥ t} ≤ exp

(
−2t2/

n∑
i=1

c2
i

)
.

10 / 38

Rademacher complexity of H

Definition (Rademacher complexity of H)

Rn(H) = ESσ sup
h∈H

2

n

n∑
i=1

σih(Xi),

where σ = {σ1, . . . , σn}, and P(σi = +1) = P(σi = −1) = 1/2.

On Rn

I It measures the richness of the class H
I Says how well H is capable of correlating with randomly assigned labels

I The marginal distribution over X is directly taken into account

I It cannot be directly computed. . .

11 / 38

Rademacher complexity of H

Definition (Rademacher complexity of H)

Rn(H) = ESσ sup
h∈H

2

n

n∑
i=1

σih(Xi),

where σ = {σ1, . . . , σn}, and P(σi = +1) = P(σi = −1) = 1/2.

Definition (Empirical Rademacher complexity R̂(H,S))

R̂(H, S) = Eσ sup
h∈H

2

n

n∑
i=1

σih(Xi)

Concentration of R̂(H,S)

Using McDiarmid inequality, with prob. at least 1− δ

R(H) ≤ R̂(H,S) + c

√
log 2/δ

2n

11 / 38

Proof of the Rademacher-based bound

For all h (simultaneously), the following trivially holds

R(h)− R̂(h, S) ≤ sup
h∈H

(
R(h)− R̂(h, S)

)
= sup

h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

and we may want to take care of the upper bound.

12 / 38

Proof of the Rademacher-based bound

For all h (simultaneously), the following trivially holds

R(h)− R̂(h, S) ≤ sup
h∈H

(
R(h)− R̂(h, S)

)
= sup

h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

and we may want to take care of the upper bound.
Let us define H : (X × Y)n → [0; 1] as

H((x1, y1), . . . , (xn, yn)) = sup
h∈H

(
R(h)− 1

n

n∑
i=1

I [h(xi) 6= yi]

)

12 / 38

Proof of the Rademacher-based bound

For all h (simultaneously), the following trivially holds

R(h)− R̂(h, S) ≤ sup
h∈H

(
R(h)− R̂(h, S)

)
= sup

h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

and we may want to take care of the upper bound.
Let us define H : (X × Y)n → [0; 1] as

H((x1, y1), . . . , (xn, yn)) = sup
h∈H

(
R(h)− 1

n

n∑
i=1

I [h(xi) 6= yi]

)
Note that, for i ∈ {1, . . . , n} and g realizing the sup of H((x1, y1), . . . , (xn, yn))

H((x1, y1), . . . , (xn, yn))− H((x1, y1), . . . , (x′i , y
′
i) . . . , (xn, yn))

=

(
R(g)−

1

n

n∑
i=1

I [g(xi) 6= yi]

)
− sup

h∈H

R(h)−
1

n

n∑
j 6=i

I [h(xj) 6= yj]−
1

n
I
[
h(x′i) 6= y ′i

]

≤
(
R(g)−

1

n

n∑
i=1

I [g(xi) 6= yi]

)
−

R(g)−
1

n

n∑
j 6=i

I [g(xj) 6= yj]−
1

n
I
[
g(x′i) 6= y ′i

]
=

1

n

(
I
[
g(x′i) 6= y ′i

]
− I [g(xi) 6= yi]

)
≤

1

n

12 / 38

Proof of the Rademacher-based bound

For all h (simultaneously), the following trivially holds

R(h)− R̂(h, S) ≤ sup
h∈H

(
R(h)− R̂(h, S)

)
= sup

h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

and we may want to take care of the upper bound.
Let us define H : (X × Y)n → [0; 1] as

H((x1, y1), . . . , (xn, yn)) = sup
h∈H

(
R(h)− 1

n

n∑
i=1

I [h(xi) 6= yi]

)
Note that, for i ∈ {1, . . . , n} and g realizing the sup of H((x1, y1), . . . , (xn, yn))

H((x1, y1), . . . , (xn, yn))− H((x1, y1), . . . , (x′i , y
′
i) . . . , (xn, yn))

=

(
R(g)−

1

n

n∑
i=1

I [g(xi) 6= yi]

)
− sup

h∈H

R(h)−
1

n

n∑
j 6=i

I [h(xj) 6= yj]−
1

n
I
[
h(x′i) 6= y ′i

]
≤
(
R(g)−

1

n

n∑
i=1

I [g(xi) 6= yi]

)
−

R(g)−
1

n

n∑
j 6=i

I [g(xj) 6= yj]−
1

n
I
[
g(x′i) 6= y ′i

]

=
1

n

(
I
[
g(x′i) 6= y ′i

]
− I [g(xi) 6= yi]

)
≤

1

n

12 / 38

Proof of the Rademacher-based bound

For all h (simultaneously), the following trivially holds

R(h)− R̂(h, S) ≤ sup
h∈H

(
R(h)− R̂(h, S)

)
= sup

h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

and we may want to take care of the upper bound.
Let us define H : (X × Y)n → [0; 1] as

H((x1, y1), . . . , (xn, yn)) = sup
h∈H

(
R(h)− 1

n

n∑
i=1

I [h(xi) 6= yi]

)
Note that, for i ∈ {1, . . . , n} and g realizing the sup of H((x1, y1), . . . , (xn, yn))

H((x1, y1), . . . , (xn, yn))− H((x1, y1), . . . , (x′i , y
′
i) . . . , (xn, yn))

=

(
R(g)−

1

n

n∑
i=1

I [g(xi) 6= yi]

)
− sup

h∈H

R(h)−
1

n

n∑
j 6=i

I [h(xj) 6= yj]−
1

n
I
[
h(x′i) 6= y ′i

]
≤
(
R(g)−

1

n

n∑
i=1

I [g(xi) 6= yi]

)
−

R(g)−
1

n

n∑
j 6=i

I [g(xj) 6= yj]−
1

n
I
[
g(x′i) 6= y ′i

]
=

1

n

(
I
[
g(x′i) 6= y ′i

]
− I [g(xi) 6= yi]

)
≤

1

n

12 / 38

Proof of the Rademacher-based bound

For all h (simultaneously), the following trivially holds

R(h)− R̂(h, S) ≤ sup
h∈H

(
R(h)− R̂(h, S)

)
= sup

h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi) 6= Yi]

)
and we may want to take care of the upper bound.
Let us define H : (X × Y)n → [0; 1] as

H((x1, y1), . . . , (xn, yn)) = sup
h∈H

(
R(h)− 1

n

n∑
i=1

I [h(xi) 6= yi]

)
We thus have∣∣H((x1, y1), . . . , (xn, yn))− H((x1, y1), . . . , (x ′i , y

′
i) . . . , (xn, yn))

∣∣ ≤ 1

n

and we may use McDiarmid’s concentration inequality:

P (H(S)− ESH(S) ≥ ε) ≤ exp(−2nε2)

or, with probability 1− δ

H(S) ≤ ES sup
h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi) 6= Yi]

)
+

√
log 1/δ

2n

12 / 38

Proof of the Rademacher-based bound (we don’t back down)

We now have

R(h)− R̂(h,S) ≤δ ES sup
h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi) 6= Yi]

)
+

√
log 1/δ

2n

and the crux is, again, to work out the upper bound.

13 / 38

Proof of the Rademacher-based bound (we don’t back down)

We now have

R(h)− R̂(h,S) ≤δ ES sup
h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi) 6= Yi]

)
+

√
log 1/δ

2n

and the crux is, again, to work out the upper bound.

ES sup
h∈H

(
R(h)−

1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

= ES sup
h∈H

(
ES′

1

n

n∑
i=1

I
[
h(X ′i) 6= Y ′i

]
−

1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

≤ ESS′
1

n
sup
h∈H

n∑
i=1

(
I
[
h(X ′i) 6= Y ′i

]
− I [h(Xi) 6= Yi]

)
(convexity of sup)

= ESS′σ
1

n
sup
h∈H

n∑
i=1

σi
(
I
[
h(X ′i) 6= Y ′i

]
− I [h(Xi) 6= Yi]

)
(identical distribution)

= ESS′σ sup
h∈H

(
n∑

i=1

σi I
[
h(X ′i) 6= Y ′i

]
−

n∑
i=1

σi I [h(Xi) 6= Yi]

)

≤ ESσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi]

13 / 38

Proof of the Rademacher-based bound (we don’t back down)

We now have

R(h)− R̂(h,S) ≤δ ES sup
h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi) 6= Yi]

)
+

√
log 1/δ

2n

and the crux is, again, to work out the upper bound.

ES sup
h∈H

(
R(h)−

1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

= ES sup
h∈H

(
ES′

1

n

n∑
i=1

I
[
h(X ′i) 6= Y ′i

]
−

1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

≤ ESS′
1

n
sup
h∈H

n∑
i=1

(
I
[
h(X ′i) 6= Y ′i

]
− I [h(Xi) 6= Yi]

)
(convexity of sup)

= ESS′σ
1

n
sup
h∈H

n∑
i=1

σi
(
I
[
h(X ′i) 6= Y ′i

]
− I [h(Xi) 6= Yi]

)
(identical distribution)

= ESS′σ sup
h∈H

(
n∑

i=1

σi I
[
h(X ′i) 6= Y ′i

]
−

n∑
i=1

σi I [h(Xi) 6= Yi]

)

≤ ESσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi]

13 / 38

Proof of the Rademacher-based bound (we don’t back down)

We now have

R(h)− R̂(h,S) ≤δ ES sup
h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi) 6= Yi]

)
+

√
log 1/δ

2n

and the crux is, again, to work out the upper bound.

ES sup
h∈H

(
R(h)−

1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

= ES sup
h∈H

(
ES′

1

n

n∑
i=1

I
[
h(X ′i) 6= Y ′i

]
−

1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

≤ ESS′
1

n
sup
h∈H

n∑
i=1

(
I
[
h(X ′i) 6= Y ′i

]
− I [h(Xi) 6= Yi]

)
(convexity of sup)

= ESS′σ
1

n
sup
h∈H

n∑
i=1

σi
(
I
[
h(X ′i) 6= Y ′i

]
− I [h(Xi) 6= Yi]

)
(identical distribution)

= ESS′σ sup
h∈H

(
n∑

i=1

σi I
[
h(X ′i) 6= Y ′i

]
−

n∑
i=1

σi I [h(Xi) 6= Yi]

)

≤ ESσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi]

13 / 38

Proof of the Rademacher-based bound (we don’t back down)

We now have

R(h)− R̂(h,S) ≤δ ES sup
h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi) 6= Yi]

)
+

√
log 1/δ

2n

and the crux is, again, to work out the upper bound.

ES sup
h∈H

(
R(h)−

1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

= ES sup
h∈H

(
ES′

1

n

n∑
i=1

I
[
h(X ′i) 6= Y ′i

]
−

1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

≤ ESS′
1

n
sup
h∈H

n∑
i=1

(
I
[
h(X ′i) 6= Y ′i

]
− I [h(Xi) 6= Yi]

)
(convexity of sup)

= ESS′σ
1

n
sup
h∈H

n∑
i=1

σi
(
I
[
h(X ′i) 6= Y ′i

]
− I [h(Xi) 6= Yi]

)
(identical distribution)

= ESS′σ sup
h∈H

(
n∑

i=1

σi I
[
h(X ′i) 6= Y ′i

]
−

n∑
i=1

σi I [h(Xi) 6= Yi]

)

≤ ESσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi]

13 / 38

Proof of the Rademacher-based bound (we don’t back down)

We now have

R(h)− R̂(h,S) ≤δ ES sup
h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi) 6= Yi]

)
+

√
log 1/δ

2n

and the crux is, again, to work out the upper bound.

ES sup
h∈H

(
R(h)−

1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

= ES sup
h∈H

(
ES′

1

n

n∑
i=1

I
[
h(X ′i) 6= Y ′i

]
−

1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

≤ ESS′
1

n
sup
h∈H

n∑
i=1

(
I
[
h(X ′i) 6= Y ′i

]
− I [h(Xi) 6= Yi]

)
(convexity of sup)

= ESS′σ
1

n
sup
h∈H

n∑
i=1

σi
(
I
[
h(X ′i) 6= Y ′i

]
− I [h(Xi) 6= Yi]

)
(identical distribution)

= ESS′σ sup
h∈H

(
n∑

i=1

σi I
[
h(X ′i) 6= Y ′i

]
−

n∑
i=1

σi I [h(Xi) 6= Yi]

)

≤ ESσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi]

13 / 38

Proof of the Rademacher-based bound (we don’t back down)

We now have

R(h)− R̂(h,S) ≤δ ES sup
h∈H

(
R(h)− 1

n

n∑
i=1

I [h(Xi) 6= Yi]

)
+

√
log 1/δ

2n

and the crux is, again, to work out the upper bound.

ES sup
h∈H

(
R(h)−

1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

= ES sup
h∈H

(
ES′

1

n

n∑
i=1

I
[
h(X ′i) 6= Y ′i

]
−

1

n

n∑
i=1

I [h(Xi) 6= Yi]

)

≤ ESS′
1

n
sup
h∈H

n∑
i=1

(
I
[
h(X ′i) 6= Y ′i

]
− I [h(Xi) 6= Yi]

)
(convexity of sup)

= ESS′σ
1

n
sup
h∈H

n∑
i=1

σi
(
I
[
h(X ′i) 6= Y ′i

]
− I [h(Xi) 6= Yi]

)
(identical distribution)

= ESS′σ sup
h∈H

(
n∑

i=1

σi I
[
h(X ′i) 6= Y ′i

]
−

n∑
i=1

σi I [h(Xi) 6= Yi]

)

≤ ESσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi]

13 / 38

Proof of the Rademacher-based bound (almost there)

We are at the point where

R(h)− R̂(h,S) ≤δ ESσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi] +

√
log 1/δ

2n

and the upper bound might be tamed as follows.

14 / 38

Proof of the Rademacher-based bound (almost there)

We are at the point where

R(h)− R̂(h,S) ≤δ ESσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi] +

√
log 1/δ

2n

and the upper bound might be tamed as follows.

Eσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi] = Eσ
2

n
sup
h∈H

n∑
i=1

σi (1− Yih(Xi))/2

= Eσ
2

n
sup
h∈H

n∑
i=1

σiYih(Xi)/2

= Eσ
2

n
sup
h∈H

n∑
i=1

σih(Xi)/2

14 / 38

Proof of the Rademacher-based bound (almost there)

We are at the point where

R(h)− R̂(h,S) ≤δ ESσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi] +

√
log 1/δ

2n

and the upper bound might be tamed as follows.

Eσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi] = Eσ
2

n
sup
h∈H

n∑
i=1

σi (1− Yih(Xi))/2

= Eσ
2

n
sup
h∈H

n∑
i=1

σiYih(Xi)/2

= Eσ
2

n
sup
h∈H

n∑
i=1

σih(Xi)/2

14 / 38

Proof of the Rademacher-based bound (almost there)

We are at the point where

R(h)− R̂(h,S) ≤δ ESσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi] +

√
log 1/δ

2n

and the upper bound might be tamed as follows.

Eσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi] = Eσ
2

n
sup
h∈H

n∑
i=1

σi (1− Yih(Xi))/2

= Eσ
2

n
sup
h∈H

n∑
i=1

σiYih(Xi)/2

= Eσ
2

n
sup
h∈H

n∑
i=1

σih(Xi)/2

14 / 38

Proof of the Rademacher-based bound (almost there)

We are at the point where

R(h)− R̂(h,S) ≤δ ESσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi] +

√
log 1/δ

2n

and the upper bound might be tamed as follows.

Eσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi] = Eσ
2

n
sup
h∈H

n∑
i=1

σi (1− Yih(Xi))/2

= Eσ
2

n
sup
h∈H

n∑
i=1

σiYih(Xi)/2

= Eσ
2

n
sup
h∈H

n∑
i=1

σih(Xi)/2

and, therefore,

ESσ
2

n
sup
h∈H

n∑
i=1

σi I [h(Xi) 6= Yi] = ESσ
2

n
sup
h∈H

n∑
i=1

σih(Xi)/2 =
Rn(H)

2

14 / 38

Proof of the Rademacher-based bound (we are done)

Previous calculations amount to

R(h)− R̂(h, S) ≤δ
Rn(H)

2
+

√
log 1/δ

2n

15 / 38

Proof of the Rademacher-based bound (we are done)

Previous calculations amount to

R(h)− R̂(h, S) ≤δ
Rn(H)

2
+

√
log 1/δ

2n

This finally gives, using the concentration of R̂(H, S)

R(h)− R̂(h, S) ≤δ
R̂(H, S)

2
+

√
log 2/δ

2n

15 / 38

Proof of the Rademacher-based bound (we are done)

Previous calculations amount to

R(h)− R̂(h, S) ≤δ
Rn(H)

2
+

√
log 1/δ

2n

This finally gives, using the concentration of R̂(H, S)

R(h)− R̂(h, S) ≤δ
R̂(H, S)

2
+

√
log 2/δ

2n

Critical observations

I Identical distributions is pivotal to relate ES to EXYY

I It is important as well for the double-sample trick

I Independence is a necessary condition for the proof (even though there are
concentration inequalities for dependent data)

I On a side note:
I R̂(H,S) can be computed from data
I there are local versions of Rademacher complexities [Bartlett et al., 2005]

15 / 38

Beyond IIDness

Estimated relevance

True relevance
f(x) ϵ [0,1]

Study these first in lab

xi

f(xi)

- - - + + - + - +

1

2 3

45

6 7

8

?

?

?

?

16 / 38

Outline

Overview and Motivating Examples

Recall: the Blessings of IIDness
Setting
A Control on the Generalization Error

Warming up: |H| < +∞
Rademacher-based Generalization Bound

Beyond IIDness

Non-Stationarity
(Non-)assumptions
Quick Reminder on Kernels and RKHS
Forgetting is Nice when Online Learning with Kernels
Sequential Rademacher Complexity

Non-Independence
Mixing Processes
Dependent Data

Conclusion

17 / 38

Non-stationarity

(Non-)assumptions

I Training data: Z1, . . . ,Zn observations not identically distributed;

I Test data: Z ′1, . . . ,Z
′
m observations not identically distributed.

Formal frameworks

I Learning from noisy data: privacy learning, semi-supervised learning,. . .

I Transfer learning
I Drifting distributions

I switching regimes
I smoothly changing parameterized distributions

I Online learning (with adversarial oracle)

18 / 38

Quick Reminder on Kernels

Kernel Trick Basics

We are happy if we know k : X × X → R such that k(x , x ′) = 〈φ(x), φ(x ′)〉

19 / 38

Quick Reminder on Kernels

RKHS
Given a positive kernel k, the associated RKHS is the Hilbert space

H =

{
f : f =

n∑
i=1

αik(·, xi), xi ∈ X

}
,

such that for f =
∑n

i=1 αik(·, xi), g =
∑m

j=1 βjk(·, zj),

〈f , g〉 =
∑
ij

αiβjk(xi , zj).

Mapping φ might be thought of as φ(x) = k(·, x).

19 / 38

Quick Reminder on Kernels

RKHS
Given a positive kernel k, the associated RKHS is the Hilbert space

H =

{
f : f =

n∑
i=1

αik(·, xi), xi ∈ X

}
,

such that for f =
∑n

i=1 αik(·, xi), g =
∑m

j=1 βjk(·, zj),

〈f , g〉 =
∑
ij

αiβjk(xi , zj).

Mapping φ might be thought of as φ(x) = k(·, x).

Evaluation operator k(·, x)

With the definition of H, it comes that ∀h ∈ H:

∀x ∈ X , h(x) = 〈h, k(·, x)〉.

19 / 38

Online Learning

General scheme for online learning,
[Cesa-Bianchi and Lugosi, 2006, Shalev-Shwartz, 2007]

(x1, y1), . . . , (xt , yt), . . . data stream

I initialize h0

I Repeat
I predict ŷt = ht−1(xt)
I receive correct target ŷt
I incur loss `t = `(yt , ŷt , ht−1, xt)
I adjust ht−1 → ht using {`t , yt , ŷt , ht−1, xt}

20 / 38

Online Learning

General scheme for online learning,
[Cesa-Bianchi and Lugosi, 2006, Shalev-Shwartz, 2007]

(x1, y1), . . . , (xt , yt), . . . data stream

I initialize h0

I Repeat
I predict ŷt = ht−1(xt)
I receive correct target ŷt
I incur loss `t = `(yt , ŷt , ht−1, xt)
I adjust ht−1 → ht using {`t , yt , ŷt , ht−1, xt}

Example (The Immortal Perceptron [Block, 1962, Novikoff, 1963])

Update of wt when wt−1 errs on (xt , yt):

wt ← wt−1 + ytxt

I Second-Order Perceptron [Cesa-Bianchi and Lugosi, 2006]

I Ultraconservative Algorithms [Crammer and Singer, 2003]

I Passive-Aggressive Learning [Crammer et al., 2006]

I . . .

20 / 38

Online Learning

General scheme for online learning,
[Cesa-Bianchi and Lugosi, 2006, Shalev-Shwartz, 2007]

(x1, y1), . . . , (xt , yt), . . . data stream

I initialize h0

I Repeat
I predict ŷt = ht−1(xt)
I receive correct target ŷt
I incur loss `t = `(yt , ŷt , ht−1, xt)
I adjust ht−1 → ht using {`t , yt , ŷt , ht−1, xt}

Example (Stochastic Optimization)

I Pegasos [Shwartz et al., 2007, Shalev-Shwartz et al., 2011]

I Stochastic Gradient Descent [Kivinen et al., 2010, Bordes et al., 2005]

I . . .

20 / 38

Online Learning

General scheme for online learning,
[Cesa-Bianchi and Lugosi, 2006, Shalev-Shwartz, 2007]

(x1, y1), . . . , (xt , yt), . . . data stream

I initialize h0

I Repeat
I predict ŷt = ht−1(xt)
I receive correct target ŷt
I incur loss `t = `(yt , ŷt , ht−1, xt)
I adjust ht−1 → ht using {`t , yt , ŷt , ht−1, xt}

Example (Winnow algorithm [Littlestone, 1988])

Update of wt when wt−1 errs on (xt , yt):

wt ∝ wt−1 exp(ηytxt)

20 / 38

Online Learning

General scheme for online learning,
[Cesa-Bianchi and Lugosi, 2006, Shalev-Shwartz, 2007]

(x1, y1), . . . , (xt , yt), . . . data stream

I initialize h0

I Repeat
I predict ŷt = ht−1(xt)
I receive correct target ŷt
I incur loss `t = `(yt , ŷt , ht−1, xt)
I adjust ht−1 → ht using {`t , yt , ŷt , ht−1, xt}

Example (Recursive Least Squares / Optimal Control)

wt ← wt−1 + Atxt

I Online Kernel Recursive Least Squares [Engel et al., 2003]

I Sparse Online Gaussian Processes [Csato and Opper, 2002]

I . . .

20 / 38

Online Learning

General scheme for online learning,
[Cesa-Bianchi and Lugosi, 2006, Shalev-Shwartz, 2007]

(x1, y1), . . . , (xt , yt), . . . data stream

I initialize h0

I Repeat
I predict ŷt = ht−1(xt)
I receive correct target ŷt
I incur loss `t = `(yt , ŷt , ht−1, xt)
I adjust ht−1 → ht using {`t , yt , ŷt , ht−1, xt}

Example (Bandits)

I Thompson Sampling [Thompson, 1933, Chapelle and Li, 2012]

I UCB, UCT and variants [Bubeck and Cesa-Bianchi, 2012, Munos, 2014]

I Exp3, and variants [Auer et al., 2002]

I . . .

20 / 38

Forgetting is Nice when Online Learning with Kernels

Study of Online Learning with Kernels of [Kivinen et al., 2010]

I Target: a kernel classifier h =
∑n

i=1 αik(·, x)

I Philosophical update when processing (xt , yt) at time t

ht ← βtht−1 + αtk(·, xt)

21 / 38

Forgetting is Nice when Online Learning with Kernels

Study of Online Learning with Kernels of [Kivinen et al., 2010]

I Target: a kernel classifier h =
∑n

i=1 αik(·, x)

I Philosophical update when processing (xt , yt) at time t

ht ← βtht−1 + αtk(·, xt)

Drawbacks

I The kernel expansion grows with time (and so do prediction time and
storage)

I There is no recovery of the algorithm to change of distribution (old
examples have ‘too much weight’)

21 / 38

Forgetting is Nice when Online Learning with Kernels

Study of Online Learning with Kernels of [Kivinen et al., 2010]

I Target: a kernel classifier h =
∑n

i=1 αik(·, x)

I Philosophical update when processing (xt , yt) at time t

ht ← βtht−1 + αtk(·, xt)

Drawbacks

I The kernel expansion grows with time (and so do prediction time and
storage)

I There is no recovery of the algorithm to change of distribution (old
examples have ‘too much weight’)

Solution

I Implement a strategy to forget old information

I Do it so the regret of the algorithm is controlled

21 / 38

Forgetting is Nice when Online Learning with Kernels

Study of Online Learning with Kernels of [Kivinen et al., 2010]

I Target: a kernel classifier h =
∑n

i=1 αik(·, x)

I Philosophical update when processing (xt , yt) at time t

ht ← βtht−1 + αtk(·, xt)

Many related works

I Kernel Perceptron [Shawe-Taylor and Cristianini, 2004], Passive-Aggressive
Learning [Crammer et al., 2006], Pegasos
[Shwartz et al., 2007, Shalev-Shwartz et al., 2011]

I Budget online learning: Budget Perceptron [Crammer et al., 2003],
Forgetron [Dekel et al., 2008], Last Recent Budget
Perceptron [Cavallanti et al., 2007],
Projectron [Orabona and Keshet, 2008]

21 / 38

Norma [Kivinen et al., 2010]

Setting

I Stream of data (x1, y1), . . . , (xt , yt), . . .

I In the hindsight, a batch procedure

h = arg min
f∈H

λ

2
‖f ‖2 +

1

n

n∑
t=1

`(f (xt), yt),

where ` is some convex loss function and λ > 0.

22 / 38

Norma [Kivinen et al., 2010]

A stochastic (sub-)gradient descent procedure

General update:
ht ← ht−1 − η∇f |f =ht−1 Rt(f , (xt , yt))

for

Rt(f , (xt , yt)) =
λ

2
‖f ‖2 + `(f (xt), yt)

and (xt , yt) ‘randomly’ chosen.

22 / 38

Norma [Kivinen et al., 2010]

A stochastic (sub-)gradient descent procedure

General update:
ht ← ht−1 − η∇f |f =ht−1 Rt(f , (xt , yt))

for

Rt(f , (xt , yt)) =
λ

2
‖f ‖2 + `(f (xt), yt)

and (xt , yt) ‘randomly’ chosen.

Working out ∇f Rt(f , (xt , yt))

Thanks to ‖f ‖2 = 〈f , f 〉 and f (x) = 〈f , k(·, x)〉, we have

∇f Rt(f , (xt , yt)) = λf +∇f ` (〈f , k(·, xt)〉, yt)

= λf + ∂`(〈f , k(·, xt)〉, yt)k(·, xt)
= λf + ∂`(f (xt), yt)k(·, xt)

where ∂` denotes the derivative (or subderivative) of ` wrt its first variable

22 / 38

Norma [Kivinen et al., 2010]

A stochastic (sub-)gradient descent procedure

General update:
ht ← ht−1 − η∇f |f =ht−1 Rt(f , (xt , yt))

for

Rt(f , (xt , yt)) =
λ

2
‖f ‖2 + `(f (xt), yt)

and (xt , yt) ‘randomly’ chosen.

Working out ∇f Rt(f , (xt , yt))

Thanks to ‖f ‖2 = 〈f , f 〉 and f (x) = 〈f , k(·, x)〉, we have

∇f Rt(f , (xt , yt)) = λf +∇f ` (〈f , k(·, xt)〉, yt)
= λf + ∂`(〈f , k(·, xt)〉, yt)k(·, xt)

= λf + ∂`(f (xt), yt)k(·, xt)

where ∂` denotes the derivative (or subderivative) of ` wrt its first variable

22 / 38

Norma [Kivinen et al., 2010]

A stochastic (sub-)gradient descent procedure

General update:
ht ← ht−1 − η∇f |f =ht−1 Rt(f , (xt , yt))

for

Rt(f , (xt , yt)) =
λ

2
‖f ‖2 + `(f (xt), yt)

and (xt , yt) ‘randomly’ chosen.

Working out ∇f Rt(f , (xt , yt))

Thanks to ‖f ‖2 = 〈f , f 〉 and f (x) = 〈f , k(·, x)〉, we have

∇f Rt(f , (xt , yt)) = λf +∇f ` (〈f , k(·, xt)〉, yt)
= λf + ∂`(〈f , k(·, xt)〉, yt)k(·, xt)
= λf + ∂`(f (xt), yt)k(·, xt)

where ∂` denotes the derivative (or subderivative) of ` wrt its first variable

22 / 38

Norma [Kivinen et al., 2010]

Update

We have

ht = ht−1 − η∇f |f =ht−1 Rt(f , (xt , yt))

= ht−1 − η [λht−1 + ∂`(ht−1(xt), yt)k(·, xt)]

= (1− λη)ht−1−η∂`(ht−1(xt), yt)︸ ︷︷ ︸
αt
t

k(·, xt)

22 / 38

Norma [Kivinen et al., 2010]

Update

We have

ht = ht−1 − η∇f |f =ht−1 Rt(f , (xt , yt))

= ht−1 − η [λht−1 + ∂`(ht−1(xt), yt)k(·, xt)]

= (1− λη)ht−1−η∂`(ht−1(xt), yt)︸ ︷︷ ︸
αt
t

k(·, xt)

22 / 38

Norma [Kivinen et al., 2010]

Update

We have

ht = ht−1 − η∇f |f =ht−1 Rt(f , (xt , yt))

= ht−1 − η [λht−1 + ∂`(ht−1(xt), yt)k(·, xt)]

= (1− λη)ht−1 − η∂`(ht−1(xt), yt)k(·, xt)

= (1− λη)ht−1−η∂`(ht−1(xt), yt)︸ ︷︷ ︸
αt
t

k(·, xt)

22 / 38

Norma [Kivinen et al., 2010]

Update

We have

ht = ht−1 − η∇f |f =ht−1 Rt(f , (xt , yt))

= ht−1 − η [λht−1 + ∂`(ht−1(xt), yt)k(·, xt)]

= (1− λη)ht−1−η∂`(ht−1(xt), yt)︸ ︷︷ ︸
αt
t

k(·, xt)

22 / 38

Norma [Kivinen et al., 2010]

Update

We have

ht = ht−1 − η∇f |f =ht−1 Rt(f , (xt , yt))

= ht−1 − η [λht−1 + ∂`(ht−1(xt), yt)k(·, xt)]

= (1− λη)ht−1−η∂`(ht−1(xt), yt)︸ ︷︷ ︸
αt
t

k(·, xt)

Compact representation

At time t,

ht =
t∑
τ=1

αt
τk(·, xτ)

where (by induction, with h0 = 0)

αt
τ =

{
−η∂`(ht−1(xt), yt) if τ = t
(1− ηλ)t−ταττ otherwise

22 / 38

Norma [Kivinen et al., 2010]

Compact representation

At time t,

ht =
t∑
τ=1

αt
τk(·, xτ)

where (by induction, with h0 = 0)

αt
τ =

{
−η∂`(ht−1(xt), yt) if τ = t
(1− ηλ)t−ταττ otherwise

Observations

I If 0 < 1− ηλ < 1, the weights of old examples decrease exponentially fast
I This calls for a (smooth) truncation procedure motivated by

I numerical representation purposes
I adaptation purposes
I compactness purposes

22 / 38

Norma [Kivinen et al., 2010]

Compact representation

At time t,

ht =
t∑
τ=1

αt
τk(·, xτ)

where (by induction, with h0 = 0)

αt
τ =

{
−η∂`(ht−1(xt), yt) if τ = t
(1− ηλ)t−ταττ otherwise

Theorem (Truncation error, smooth forgetting of old examples)

If the loss function is such that |∂z`(z , y)| ≤ C, ‖k‖ ≤ X and

htrunc
t =

t∑
i=max(1,t−τ)

αt
i k(·, xi),

then ∥∥ht − htrunc
t

∥∥ ≤ (1− ηλ)τCX/λ

22 / 38

Norma [Kivinen et al., 2010]

A Controlled Drifting Class of Sequence of Predictors

G(B,D1,D2) =

{
(g1, . . . , gt) :

∑
τ

‖gτ − gτ+1‖ ≤ D1,
∑
τ

‖gτ − gτ+1‖2 ≤ D2, ‖gτ‖ ≤ B

}

Cumulative Loss Lcum

Lcum(h,S) =
∑

t `(ht−1(xt), yt),
where h = (h1, . . . , ht).

Theorem (Mistake Bound of Norma with Non-Stationary Targets)

Suppose that:

I `(h(x), y) = max(0, ρ− yh(x)) for ρ > 0

I ∃g ∈ G(B,D1,D2)

Then there exists right choices for η and λ such that∣∣∣∣ {1 ≤ τ ≤ t : yτhτ−1(xτ) ≤ ρ}
∣∣∣∣ ≤ K(η, λ, ρ,D1,D2,B)

22 / 38

Norma [Kivinen et al., 2010]

A Controlled Drifting Class of Sequence of Predictors

G(B,D1,D2) =

{
(g1, . . . , gt) :

∑
τ

‖gτ − gτ+1‖ ≤ D1,
∑
τ

‖gτ − gτ+1‖2 ≤ D2, ‖gτ‖ ≤ B

}

Cumulative Loss Lcum

Lcum(h,S) =
∑

t `(ht−1(xt), yt),
where h = (h1, . . . , ht).

Theorem (Mistake Bound of Norma with Non-Stationary Targets)

Suppose that:

I `(h(x), y) = max(0, ρ− yh(x)) for ρ > 0

I ∃g ∈ G(B,D1,D2)

Then there exists right choices for η and λ such that∣∣∣∣ {1 ≤ τ ≤ t : yτhτ−1(xτ) ≤ ρ}
∣∣∣∣ ≤ K(η, λ, ρ,D1,D2,B)

Proof.
Just kidding

22 / 38

What to take home from online learning with kernels

Algorithmically

I Many algorithms for online learning

I They implement some sort of forgetting to be able to adapt to drifting
distribution.

23 / 38

What to take home from online learning with kernels

Algorithmically

I Many algorithms for online learning

I They implement some sort of forgetting to be able to adapt to drifting
distribution.

Regret, Mistake bounds

I Natural way to analyze online learning algorithms: mistake bounds, regret

I It is known that small regret gives good generalization error under the
right assumptions [Cesa-Bianchi et al., 2004]

23 / 38

What to take home from online learning with kernels

Algorithmically

I Many algorithms for online learning

I They implement some sort of forgetting to be able to adapt to drifting
distribution.

Regret, Mistake bounds

I Natural way to analyze online learning algorithms: mistake bounds, regret

I It is known that small regret gives good generalization error under the
right assumptions [Cesa-Bianchi et al., 2004]

Where is Rademacher???

23 / 38

Online Learning and Sequential Rademacher Complexity

Issues

I seems that the tools used to analyze online learning algorithm are very
different from those for batch algorithm

I not easy to take advantage of things made in one field in the other field

I connections between the learning approach is not straightforward

24 / 38

Online Learning and Sequential Rademacher Complexity

Issues

I seems that the tools used to analyze online learning algorithm are very
different from those for batch algorithm

I not easy to take advantage of things made in one field in the other field

I connections between the learning approach is not straightforward

A beautiful contribution to address these issues
Work of [Rakhlin et al., 2010a, Rakhlin et al., 2010b]. One of the pivotal
notion: Sequential Rademacher Complexity (where xτ : {±1}τ → X)

Rt(H) = sup
x

Eε

[
sup
h∈H

t∑
τ=1

ετ f (xτ (ε))

]
,

(picture from Rakhlin’s poster)
24 / 38

Outline

Overview and Motivating Examples

Recall: the Blessings of IIDness
Setting
A Control on the Generalization Error

Warming up: |H| < +∞
Rademacher-based Generalization Bound

Beyond IIDness

Non-Stationarity
(Non-)assumptions
Quick Reminder on Kernels and RKHS
Forgetting is Nice when Online Learning with Kernels
Sequential Rademacher Complexity

Non-Independence
Mixing Processes
Dependent Data

Conclusion

25 / 38

Mixing processes

Setting

I Z = {Zt}+∞
t=−∞ stationary: for any t and m, k ≥ 0, the random

subsequences (Zt , . . . ,Zt+m) and (Zt+k , . . . ,Zt+m+k) are identically
distributed

I The dependencies are fading over time, e.g., φ-mixing process:

ϕ(k) = sup
n,A∈σ+∞

n+k
,B∈σn

−∞

|P [A|B]− P [A]| .

Z is ϕ-mixing if ϕ(k)→ 0 as k → 0

26 / 38

Mixing processes

Setting

I Z = {Zt}+∞
t=−∞ stationary: for any t and m, k ≥ 0, the random

subsequences (Zt , . . . ,Zt+m) and (Zt+k , . . . ,Zt+m+k) are identically
distributed

I The dependencies are fading over time, e.g., φ-mixing process:

ϕ(k) = sup
n,A∈σ+∞

n+k
,B∈σn

−∞

|P [A|B]− P [A]| .

Z is ϕ-mixing if ϕ(k)→ 0 as k → 0

Theorem
([Kontorovich and Ramanan, 2008, Mohri and Rostamizadeh, 2008])

Let ψ : Um → R be a function defined over a countable space U , and X be a
stationary ϕ mixing process. If ψ is l -Lipschitz with respect to the Hamming
metric for some l > 0, then the following holds for all t > 0:

PX [|ψ(X)− Eψ(X)| > t] ≤ 2 exp

[
− t2

2ml2‖Λm‖2
∞

]
, (1)

where ‖Λm‖∞ ≤ 1 + 2
∑m

k=1 ϕ(k).
26 / 38

Mixing processes

Setting

I Z = {Zt}+∞
t=−∞ stationary: for any t and m, k ≥ 0, the random

subsequences (Zt , . . . ,Zt+m) and (Zt+k , . . . ,Zt+m+k) are identically
distributed

I The dependencies are fading over time, e.g., φ-mixing process:

ϕ(k) = sup
n,A∈σ+∞

n+k
,B∈σn

−∞

|P [A|B]− P [A]| .

Z is ϕ-mixing if ϕ(k)→ 0 as k → 0

Recent results

I Stability bound for β- and φ-mixing processes
[Mohri and Rostamizadeh, 2008]

I Rademacher complexity fpr β-mixing processes
[Mohri and Rostamizadeh, 2009]

I Consistency of learning in α-mixing non stationary processes
[Steinwart et al., 2009]

I . . .

26 / 38

Interdependent and Identically Distributed Data

Basic assumptions

I Ztrain = {Zi}mi=1 distributed according to Dm

I p(Ztrain) 6=
∏m

i=1 p(Zi)

I ptrain(Zi) = ptrain(Z) = ptest(Z) (similar to a stationarity condition)

I Goal: control the risk of a learned function wrt ptest(Z)

Illustration

Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

27 / 38

Graph Fractional Chromatic Number

Definition (Dependency Graph)

Let Z = {Zi}mi=1 be a set of r.v. taking values in Z. The dependency graph
Γ(Z) of Z is such that the vertices of Γ(Z) are {1, . . . ,m} and:

i ∼ j ⇔ p(Zi ,Zj) 6= p(Zi)p(Zj).

Definition (Fractional Covers, [Schreinerman and Ullman, 1997])

Let Γ = (V ,E) be an undirected graph, with V = {1, . . . ,m}.
I A cover C = {Cj}nj=1 of Γ, with Cj ⊆ V , is such that no two nodes in Cj

are connected

I A fractional cover C = {(Cj , ωj)}nj=1 is a slightly refined version of a cover
which assigns weights to each element of C

Finding a minimal (fractional) cover amounts to finding a minimal coloring of Γ

χ(Γ) (χ∗(Γ)) is the (fractional) chromatic number of Γ

28 / 38

Graph Fractional Chromatic Number

Definition (Dependency Graph)

Let Z = {Zi}mi=1 be a set of r.v. taking values in Z. The dependency graph
Γ(Z) of Z is such that the vertices of Γ(Z) are {1, . . . ,m} and:

i ∼ j ⇔ p(Zi ,Zj) 6= p(Zi)p(Zj).

Property on χ(Γ) and χ∗(Γ)[Schreinerman and Ullman, 1997]

Let Γ = (V ,E) be a graph. Let c(Γ) be the clique number of Γ. Let ∆(Γ) be
the maximum degree of a vertex in Γ. The following holds

1 ≤ c(Γ) ≤ χ∗(Γ) ≤ χ(Γ) ≤ ∆(Γ) + 1.

In addition, 1 = c(Γ) = χ∗(Γ) = χ(Γ) = ∆(Γ) + 1 if and only if Γ is totally
disconnected.

On the (fractional) chromatic number

I Computing χ and χ∗ is an NP-hard problem, but. . .

I we will consider instances of graphs for which they can be computed

28 / 38

Graph Fractional Chromatic Number

Definition (Dependency Graph)

Let Z = {Zi}mi=1 be a set of r.v. taking values in Z. The dependency graph
Γ(Z) of Z is such that the vertices of Γ(Z) are {1, . . . ,m} and:

i ∼ j ⇔ p(Zi ,Zj) 6= p(Zi)p(Zj).

Example: Bipartite Ranking

Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

c = χ∗ = χ = 4

Usefulness of covers
A (fractional) cover of minimal weight breaks a set of dependent r.v.’s into a
minimal set of (large) subsets of independent r.v.’s

28 / 38

Concentration Inequalities

Theorem (McDiarmid’s inequality for dependent variables)

With mild assumptions as so that Z = f (X1, . . . ,XN) decomposes according to
a fractional cover of X1, . . . ,XN ., the following concentration inequalities hold:

P(Z − EZ ≥ ε) ≤ exp

{
−Nε2

4χf

}
P(EZ − Z ≥ ε) ≤ exp

{
−Nε2

4χf

}

29 / 38

Concentration Inequalities

Theorem (Bennett’s Inequality for Dependent Variables)

Suppose some mild assumptions hold, with Z = f (X1, . . . ,XN) which
decomposes according to a fractional cover of X1, . . . ,XN . We have the
following results:

I for all t ≥ 0

P(Z ≥ EZ + t) ≤ exp

(
− v

χf
h

(
4t

5v

))
,

with h(x) = (1 + x) log(1 + x)− x and v
.

= (1 + b)EZ + Nσ2

I for all t ≥ 0

P
(

Z ≥ EZ +
√

2cvt +
ct

3

)
≤ e−t

with c
.

= 25χ/16.

Notes

I secret tool to get these concentration inequalities

I Rademacher-based bound on generalization can be obtained... and more

29 / 38

Outline

Overview and Motivating Examples

Recall: the Blessings of IIDness
Setting
A Control on the Generalization Error

Warming up: |H| < +∞
Rademacher-based Generalization Bound

Beyond IIDness

Non-Stationarity
(Non-)assumptions
Quick Reminder on Kernels and RKHS
Forgetting is Nice when Online Learning with Kernels
Sequential Rademacher Complexity

Non-Independence
Mixing Processes
Dependent Data

Conclusion

30 / 38

What to take home

IID

I Much has been done in the field of IID learning

I This assumption allows one to get strong generalization results

Non-IIDness

I No agreed-upon parametrization of non-stationarity

I A lot of work to do in online learning

I Nice tools from graph theory and concentration inequality for the
dependent case

31 / 38

References I

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. (2002).

The nonstochastic multiarmed bandit problem.

SIAM Journal on Computing, 32(1):48–77.

Bartlett, P., Bousquet, O., and Mendelson, S. (2005).

Local rademacher complexities.

Annals of Statistics, 33(4):1497–1537.

Bartlett, P. L. and Mendelson, S. (2002).

Rademacher and gaussian complexities: Risk bounds and structural results.

Journal of Machine Learning Research, 3:463–482.

Block, H. (1962).

The perceptron: a model for brain functioning.

Reviews of Modern Physics, 34:123––135.

Bordes, A., Ertekin, S., Weston, J., and Bottou, L. (2005).

Fast kernel classifiers with online and active learning.

Journal of Machine Learning Research, 6:1579–1619.

Bousquet, O. and Elisseeff, A. (2002).

Stability and Generalization.

Journal of Machine Learning Research, 2:499–526.

32 / 38

References II

Bubeck, S. and Cesa-Bianchi, N. (2012).

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, volume 5 of
Foundation and Trends in Machine Learning.

NOW.

Cavallanti, G., Cesa-Bianchi, N., and Gentile, C. (2007).

Tracking the best hyperplane with a simple budget perceptron.

Machine Learning, 69(2-3):143–167.

Cesa-Bianchi, N., Conconi, A., and Gentile, C. (2004).

On the generalization ability of online learning algorithms.

IEEE Transactions on Information Theory, 50(9):2050–2057.

Cesa-Bianchi, N. and Lugosi, G. (2006).

Prediction, Learning, and Games.

Cambridge University Press, New York, NY, USA.

Chapelle, O. and Li, L. (2012).

An empirical evaluation of thompson sampling.

In Advances in Neural Information Processing Systems 24, pages 2249–2257.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006).

Online passive-aggressive algorithms.

JMLR, 7:551–585.

33 / 38

References III

Crammer, K., Kandola, J. S., and Singer, Y. (2003).

Online classification on a budget.

In NIPS. MIT Press.

Crammer, K. and Singer, Y. (2003).

Ultraconservative online algorithms for multiclass problems.

Journal of Machine Learning Research, 3:951–991.

Csato, L. and Opper, M. (2002).

Sparse Online Gaussian Processes.

Neural Computation, 14:641–668.

Dekel, O., Shalev-Shwartz, S., and Singer, Y. (2008).

The forgetron: A kernel-based perceptron on a budget.

SIAM J. Comput., 37(5):1342–1372.

Engel, Y., Mannor, S., and Meir, R. (2003).

The kernel recursive least squares algorithm.

IEEE Transactions on Signal Processing, 52:2275–2285.

Kivinen, J., Smola, A. J., and Williamson, B. (2010).

Online learning with kernels.

IEEE Transactions on Signal Processing, 100(10).

34 / 38

References IV

Kontorovich, L. and Ramanan, K. (2008).

Concentration inequalities for dependent random variables via the martingale method.

The Annals of Probability, 36(6):2126–2158.

Littlestone, N. (1988).

Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.

Machine Learning, 2:285–318.

McAllester, D. (1999).

Pac-bayesian model averaging.

In Proc. of the 12th Annual Conf. on Comp. learning theory, pages 164–170, New York, NY,
USA.

McDiarmid, C. (1989).

On the method of bounded differences.

Survey in Combinatorics, pages 148–188.

Mohri, M. and Rostamizadeh, A. (2008).

Stability Bounds for Non-i.i.d. Processes.

In Adv. in Neural Information Processing Systems 20, pages 1025–1032.

Mohri, M. and Rostamizadeh, A. (2009).

Rademacher Complexity Bounds for Non-I.I.D. Processes.

In Adv. in Neural Information Processing Systems 21, pages 1025–1032.

35 / 38

References V

Munos, R. (2014).

From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to
Optimization and Planning, volume 7(1) of Foundations and Trends in Machine Learning.

NOW.

Novikoff, A. (1963).

On convergence proofs for perceptrons.

In Proc. of the Symposium on the Mathematical Theory of Automata, Vol. 12, pages
615––622.

Orabona, F. and Keshet, J. (2008).

The projectron: a bounded kernel-based perceptron.

In In Proceedings of the 25th international conference on Machine learning, pages 720–727.
ACM.

Rakhlin, A., Sridharan, K., and Tewari, A. (2010a).

Online learning: Random averages, combinatorial parameters, and learnability.

In NIPS, pages 1984–1992.

Rakhlin, A., Sridharan, K., and Tewari, A. (2010b).

Online learning: Random averages, combinatorial parameters, and learnability.

CoRR, abs/1006.1138.

36 / 38

References VI

Schreinerman, E. and Ullman, D. (1997).

Fractional graph theory: A rational approach to the theory of graphs.

Wiley Interscience Series in Discrete Math.

Shalev-Shwartz, S. (2007).

Online Learning: Theory, Algorithms, and Applications.

PhD thesis, The Hebrew University of Jerusalem.

Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter, A. (2011).

Pegasos: primal estimated sub-gradient solver for svm.

Math. Program., 127(1):3–30.

Shawe-Taylor, J. and Cristianini, N. (2004).

Kernel Methods for Pattern Analysis.

Cambridge University Press.

Shimodaira, H. (2000).

Improving predictive inference under covariate shift by weighting the log-likelihood function.

Journal of Statistical Planning and Inference, 90:227–244.

Shwartz, S. S., Singer, Y., and Srebro, N. (2007).

Pegasos: Primal estimated sub-gradient solver for svm.

In ICML ’07: Proceedings of the 24th international conference on Machine learning, New
York, NY, USA.

37 / 38

References VII

Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2006).

A Hilbert Space Embedding for Distributions.

In Proc. of Int. Conf. on Algorithmic Learning Theory.

Steinwart, I., Hush, D., and Scovel, C. (2009).

Learning from dependent observations.

Journal of Multivariate Analysis, 100(1):175–194.

Storkey, A. and Sugiyama, M. (2007).

Mixture regression for covariate shift.

In Adv. in Neural Information Processing Systems, volume 19.

Thompson, W. R. (1933).

On the likelihood that one unknown probability exceeds another in view of the evidence of
two samples.

Biometrika, 25(3-4):285––294.

Vapnik, V. (1998).

Statistical Learning Theory.

John Wiley and Sons, inc.

38 / 38

	Overview and Motivating Examples
	Recall: the Blessings of IIDness
	Setting
	A Control on the Generalization Error
	Beyond IIDness

	Non-Stationarity
	(Non-)assumptions
	Quick Reminder on Kernels and RKHS
	Forgetting is Nice when Online Learning with Kernels
	Sequential Rademacher Complexity

	Non-Independence
	Mixing Processes
	Dependent Data

	Conclusion

