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Context

State-of-the-art
I ML models are very good for some generic problems

I Text Classification, Object Recognition, Speech Recognition

Big Data
”Big Data” is not a quantiative problem that concerns
power/parallelization, but mainly a qualitative problem: it changes the
nature and the way we access information and encourages the
development of new ML paradigms.



Context

Usual assumptions

I When computing fθ(x), we consider that x is known

I x has a known topology

I x has a pre-computed representation (i.e x ∈ Rn)

I When learning, we consider a known (acquired) training set.

Theses assumptions are not appropriated for dealing with actual systems
⇒

New Needs

I Learning to deal with heterogeneous/complex data

I Learning to acquire data

I Learning to deal with operationnal constraints

I Decentralized Learning

I Never-Ending Learning

I ...



Context

Datum
A datum x ∈ Rn is made up of features xi∈[0,n]:

x = (x1, · · · , xn)

Empirical Risk Minimization
Find fθ∗(x) = y such that

θ∗ = argmin
θ

[L(θ)] = argmin
θ

[
1

N

N∑
i=1

∆(fθ(xi), yi )]

Remarks

I Classification procedure is atomic and same for each datum.

I What matters is the result, but not how it was obtained.



Drawbacks of Atomic Classifiers

Feature Acquisition

I Entire datum must be available upfront.

I Cannot adapt feature choice to each datum.

Costly Features

I Costs associated to features cannot be taken into account.

I Any trade-offs between cost and accuracy occur on a dataset level.



Example: Medical Diagnosis

General Diagnostic Process

I Ask general questions to get context.

I Ask increasingly specific questions based on previous answers.

I During entire process, gauge cost-benefit trade-off for expensive or
risky diagnostic procedures.

Two aspects:

I Adaptive information querying.

I Cost-benefit trade-offs.

This is a general procedure for domain experts when analyzing a problem.



Outline

Sequential Learning Models

I Models that learn to acquire information during inference
I and that can deal with complex topologies

I Models able to handle operationnal constraints during inference



Complex Data as a Graph of Content

Complex Data
A complex datum can be represented as a graph of content nodes

A sequence... ...as a multi-relationnal graph



Complex Data as a Graph of Content

Complex Data
A complex datum can be represented as a graph of content nodes

A Structured document... ...as a multi-relationnal graph



Complex Data as a Graph of Content

Complex Data
A complex datum can be represented as a graph of content nodes

An Image... ...as a multi-relationnal graph



Complex Data as a Graph of Content

Complex Data
A complex datum can be represented as a graph of content nodes

A social network... ...as a multi-relationnal graph

A vector as a multi-relationnal graph



A Sequential Approach to Classification

Sequential Classification

I Classification is modeled as a sequential process.

I Learning considers how the information is acquired.

Advantages of Sequential Classification

I Previously acquired information can guide further queries.

I The existence of a classification process allows it to be constrained
to make cost/accuracy trade-offs.

We use the term datum-wise classifier, as each datum is classified
differently.



Similar Approaches

Adaptive Feature Order

I Reinforcement learning approaches.

I Decision trees.

Fixed Feature Order

I Cascade classifiers.

I Early-stopping algorithms.



Sequential Models for Classification



Sequential Models for Classification



Sequential Models for Classification



Sequential Models for Classification

Eiffel Tower



Illustration

Sequential Process for Classification

I an initial block x(0) is sampled

I the classifier sequentially chooses a relation r(t) and acquires the
information x(t+1)

I At last, the classifier chooses which category to assign to x



Classification as a Sequential Process

Two conceptual elements to the sequential classification process:

I Look at information (select features).
I Look at a first element of information.
I Given this new information and previously acquired information...
I ...choose a new element of information.

I Once enough information considered, emit a decision (classify).

These two aspects can be learned jointly as a Markov decision process!



Benefits

Benefits

I It can classify any type of block data.

I It can classify data are are only partially known (e.g. streams).

I Acquired part can be processed on the fly
I speed-up of the process when processing is expensive.
I able to learn/predict with data that are not fully known

I The process is able to focus on relevant parts avoiding noise and
misleading information.

Drawback

I Learning is not really fast.... (but can be parallelized)



Markov Decision Process

Classification as an MDP
Let an MDP M be defined by a 4-tuple M = (S,A, T , r).

I S is the set of states, representing all information acquired thus far
for a specific datum.

I A is the set of possible actions, either information acquisition
actions a ∈ Ay or classification actions a ∈ Af .

I T : S ×A → S is the MDP’s transition function, returning the
requested information.

I r : S ×A → R is the reward function, returning the reward for
taking action a in state s and ending up in state s ′.

I Responsible for defining the agent’s ultimate goal for the task.



Classifier as a Policy

Policy
Decisions in an MDP are taken by a policy πθ.

I The classifier is a policy: the final output of πθ is our class label.

I The policy is a parameterized function πθ(s) = a.

I The goal of the policy πθ is to maximize the overall reward:

θ∗ = argmax
θ

1

N

N∑
i=1

Tθ(xi )∑
t=1

r(xi , π
t
θ(xi )).

I Defining a proper reward function is key.



Reward & 0/1 Loss

Learning Goal

θ∗ = argmin
θ

1

N

N∑
i=1

∆0−1(fθ(xi), yi ) minimize loss

⇔

θ∗ = argmax
θ

1

N

N∑
i=1

Tθ(si )+1∑
t=1

r(si , π
t
θ(si )) maximize reward

Reward Definition
Reward designed to correspond to a 0/1 classification loss:

r(s, a) =

{
−1 if a ∈ Ay ∧ a 6= yi

0 otherwise



Policy

Defining the Policy
The policy is a linear function approximator parameterized by θ, πθ:

I πθ(s) = argmaxa∈A θ
ᵀΦ(s, a)

I Φ(s, a) represents acquired features, their values, and the given
action.

I z is and indicator vector of selected features.

Masked representation:

µ(x, z)i =

{
x i if z i = 1

0 elsewhere

State representation:

φ(s) = (µ(x, z), z)

State-Action tuple:

Φ(s, a) = (0, · · · , φ(s)a, · · · , 0)



Training

Rollouts Classification Policy Iteration
Monte-Carlo policy iteration:

I Sample a series of random states: random datum, random set of
features.

I Estimate best action a∗ for state st by sampling:

st st+1 st+2 end

r = −1

s ′t+1 s ′t+2 s ′t+3 end

r = 0

s ′′t+1

af2 πk
θ = af1 πk

θ = ay2

af3
πk
θ = af5 πk

θ = af3 πk
θ = ay2a

y
4

I Train parameterized policy with best action for Φ(st , a
∗).



RCPI Training

Algorithm 1 RCPI

1: procedure TRAIN–RCPI(SR , M, π0, K )
2: π = π0

3: repeat
4: ST = ∅
5: for s ∈ SR do
6: for a ∈ A do
7: Q̃π(s, a)← Rollout(M, s, a,K , π)

8: A∗ = argmaxa∈A Q̃π(s, a)
9: ST ← ST ∪ {(s, a∗)∀a∗ ∈ A∗}

10: fθ = Train(ST) . fθ is a multiclass classifier
11: π′ from fθ as defined in Eq. (??)
12: πt = α(π′, πt−1)
13: until πt ∼ πt−1

14: return πt



RCPI Complexity

I Inference Complexity is I(A) at each step
I I(A) is the cost of choosing the action to do
I I(A) = |A| when using One Against All classifiers.

I Learning Complexity: SAK × TI(A) + C(S ,A).
I TI(A) is the cost of sampling one trajectory of size T
I SAK is the number trajectories necessary during simulation.
I C(S ,A) is the cost of learning the corresponding classifier.

When using OVA classifiers, RCPI learning complexity is O(A2) !.

Later
This complexity can be reduced to O(log(A))



Section Summary

Sequential Classification & Reinforcement Learning
Two concepts introduced:

I Classification as a sequential process.

I Markov decision process & reinforcement learning to find a good
policy.

Now, some applications.



Sequential Classification Tasks

The dry period means the 
temporao will be late this 
year. Again it seems that 
cocoa delivered earlier on 
consignment was 
included in the arrivals 
figures. In view of the 
lower quality over recent 
weeks farmers have sold 
a good part of their cocoa 
held on consignment. 
Comissaria Smith said 
spot bean prices rose to 
340 to 350 cruzados per 
arroba of 15 kilos. 

Read Next Read  Next Stop
Classify as 

cocoa

The dry period means the 
temporao will be late this 
year. Again it seems that 
cocoa delivered earlier on 
consignment was 
included in the arrivals 
figures. In view of the 
lower quality over recent 
weeks farmers have sold 
a good part of their cocoa 
held on consignment. 
Comissaria Smith said 
spot bean prices rose to 
340 to 350 cruzados per 
arroba of 15 kilos. 

The dry period means the 
temporao will be late this 
year. Again it seems that 
cocoa delivered earlier on 
consignment was 
included in the arrivals 
figures. In view of the 
lower quality over recent 
weeks farmers have sold 
a good part of their cocoa 
held on consignment.
Comissaria Smith said 
spot bean prices rose to 
340 to 350 cruzados per 
arroba of 15 kilos. 

 

Sentence-Based Text Classification

I Each document is read sentence-by-sentence, with the classifier
allowed to classify at any point.

I A Bag-of-Words representation is used for each sentence.



Sequential Classification Tasks

Region-Based Image Classification

I Each image is acquired region-by-region, with the classifier deciding
which region to acquire next or which class to classify into.

I Each region is represented by its local SIFT features.

MDP Elements

I States composed of images or text information acquired thus far.

I Actions allow for reading next sentence or acquiring particular region.



Experiments

Experimental Protocol

I Standard datasets such as Reuters 8-class for text (3 actions) or
PPMI (18 actions) for image.

I Datasets split into train & test (varrying splits).

I Classification policy trained on training set.

I Performance calculated on test set with final learned policy.



Sequential Text Classification: Experimental Results
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Performance is comparable to state-of-the-art approaches (BoW SVM).



Sequential Text Classification: Behavior
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I Number of sentences used for classifying each document.

I We see that most documents are barely read.



Sequentiual Image Classification: Performance

Instrument Sequential Image SVM 16

Bassoon 0.77 @ 0.04 0.77
Cello 0.76 @ 0.03 0.75

Clarinet 0.69 @ 0.02 0.69
Erhu 0.82 @ 0.08 0.80
Flute 0.90 @ 0.05 0.89

French Horn 0.85 @ 0.03 0.84
Guitar 0.85 @ 0.03 0.85
Harp 0.81 @ 0.06 0.81

Recorder 0.69 @ 0.03 0.68
Saxophone 0.80 @ 0.06 0.79
Trumpet 0.72 @ 0.05 0.68

Violin 0.86 @ 0.06 0.85

Average 0.8 @ 0.08 0.78

Sequential Image Classification on PPMI
Performance on the PPMI dataset is comparable to baseline SVM, but
sparsity is not appearing natively (number after the @)...



A Lack of Constraints

Conclusions:

I Sequential text classification offers good performance and naturally
uses very little information.

I Sequential image classification also performs well ... but does not
constrain its use of features.

Solutions

I Find a way to encourage the sequential classifier to be efficient with
its information usage.



Presentation Structure

Outline
Three main parts to this presentation:

1. Introduce sequential classification and some example tasks.

2. Constrain the classification task to encourage sparsity.

3. Show that our sparse model can easily be extended to many
cost-sensitive tasks.



Sparsity and Classification

An existing approach to encouraging efficiency is to consider a sparsity
constraint:

Regularized Empirical Loss

R(θ) =
1

N

N∑
i=1

∆(fθ(xi ), yi ) + λ||θ||0︸ ︷︷ ︸
L0 regularization term

I The L0 norm penalizes feature usage by the model on a dataset level.

I For a sequential, datum-wise classifier, we need a datum-wise
penalization.



Datum-Wise Sparsity

Sequential Classifier Definition
Let y xi be a class label, zxi be an indicator vector of selected features.

fθ(xi ) = (y xi
θ , z

xi
θ )

Datum-Wise Loss

θ∗ = argmin
θ

1

N

N∑
i=1

∆(y xi
θ , yi ) + λ

1

N

N∑
i=1

‖zxi
θ ‖0︸ ︷︷ ︸

datum-wise regularization term



Datum-Wise Sparse Model

Corresponding MDP
As mentioned previously, the reward function must be equivalent to the
defined loss.

Reward
Reward must correspond to a 0/1 classification loss with a datum-wise
regularization penalty:

r(s, a) =


−λ if a ∈ Af (instead of 0)

−1 if a ∈ Ay ∧ a 6= yi

0 otherwise



Datum-Wise Sparse Classification (contd.)

z =


0
0
0
0

 −λ
−λ

0
−1

−1

0

−λ

−λ
−λ

−λ

0
−1

−1

−λ

−λ
−λ

−λ

0
−1

−1 −1

−1

z =


0
1
0
0

 z =


0
1
0
1


z =


0
1
1
1



In this illustrated example, the final reward is −3λ.



Experiments

Experimental Protocol

I Experiments are run on 8 single-class and 4 multi-class vectorial
datasets, with varying train/test splits.

I Datasets have between 6 to 60 features, and 200-1000 elements.

I For each classifier, the sparsity parameter is varied from one extreme
(no features selected) to the other (all features selected).

I We compare DWSM’s performance to an L1 regularized linear SVM
and LARS as well as a C4.5 decision tree (CART).



Datum-Wise Sparsity: Experiments
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I This accuracy vs. sparsity plot is typical of results with DWSM.

I DWSM performs is able to keep accuracy high even under high
levels of sparsity.



Experimental Behavior
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This graphic shows the average number of features used when classifying
data on the Breast Cancer dataset. Feature usage is constant for LARS
but varies for DWSM.



Experimental Behavior
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This graphic shows how much each feature was used to classify data on
the Breast Cancer dataset. We see that some features chosen by LARS
are also used heavily by DWSM.



A wider field of application...

Conclusions

I DWSM is able to compete with state-of-the-art sparsity constraints.

I DWSM is able to find a good policy for the complex datum-wise L0

loss.

I The learning algorithm does not require a uniform cost.

I ... which can allow us to consider more complex constrained
classification problems.



Presentation Structure

Outline
Three main parts to this presentation:

1. Introduce sequential classification and some example tasks.

2. Constrain the classification task to encourage sparsity.

3. Show that our sparse model can easily be extended to many
cost-sensitive tasks.



Budgeted classifiers

Budgeted classifiers

Standard classifier:
fθ : X → Y

Budgeted classifier:
fθ : X → Y ×Z

I Z corresponds to all the ways the classifier can classify.

I yθ(x) is the prediction, zθ(x) is the classification process.

Advantage
We can define a risk with a datum process loss:

R(θ) =

∫
x,y

(∆(yθ(x), y) + C (zθ(x))P(x , y)dx .dy



Budgeted classifiers

Empirical Risk minimization

θ∗ = argmin
θ

1

`

∑̀
i=1

(∆(yθ(x i ), y i ) + C (zθ(x i ))

I C is a loss (or constraint) over the way inputs are processed

I C is defined at the datum level

I Note that: if C only depends on θ, it corresponds to the classical
regularization term of usual classifiers

C =

Price of the acquisition of a learning example

Time spent to classify

Interpretability of the resulting model

...



Budgeted Classifier

This generic loss can be optimized through Sequential Learning methods
(RL) by modifying the shape of the previously presented MDP.

I No constraint: The classifier can stop when it wants

I Sparse Classification: minimization of acquisition

I Cost-Sensitive Classification: Each feature/block has a cost

I Budgeted Classification: Limited or Maximum Budget

I Relationnal Features: The cost of acquiring a part depends on the
previouly acquired parts

I Structured Output: Outputs are structures



Datum-Wise Constrained Losses

An example datum-wise risk for cost-sensitive classification:

Cost-Sensitive Datum-Wise Empirical Risk

θ∗ = argmin
θ

1

N

N∑
i=1

∆cost(y xi
θ , yi ) +

1

N

N∑
i=1

〈ξ, zxi
θ 〉

Example

ξ = (8, 1, 123, 1, 1, 40)

zxi
θ = (1, 0, 0, 1, 0, 1)

Cost = 〈ξ, zxi
θ 〉 = 49



...and their corresponding MDP definitions.

Cost-Sensitive Reward Function
Once again we define a reward function that is equivalent to the loss:

r(s, ai ) =


−ξi if ai ∈ Af (instead of − λ)

−Cai ,y if ai ∈ Ay (instead of -1)

0 otherwise



Task Regularized Empirical Loss

Hard Budget
θ∗ = argmin

θ

1

N

N∑
i=1

∆(y
xi
θ , yi ) + λ

1

N

N∑
i=1

‖zxi
θ ‖0

subject to ‖zxi
θ ‖0 ≤ M.

Cost-Sensitive θ∗ = argminθ
1
N

N∑
i=1

∆cost(y
xi
θ , yi ) + 1

N

N∑
i=1
〈ξ, zxi

θ 〉

Grouped

Features θ∗ = argminθ
1
N

N∑
i=1

∆(y
xi
θ ), yi ) + λ 1

N

N∑
i=1

g∑
t=1

1(Ft ⊂ Zxi
θ )

Relational Features

θ∗ = argmin
θ

1

N

N∑
i=1

∆(y
xi
θ ), yi )

+
1

N

N∑
i=1

∑
f ,f ′∈Zxi

θ

Related(f , f ′)(λ− γ) + γ

Proposed tasks and corresponding learning problems.



Task Decision Process Modification Commentary

Hard Budget A(s) =

{
Af (s)

⋃
Ay (s) if ‖z‖0 < M

Ay (s) if ‖z‖0 = M

Allows users to choose a
minimum level of sparsity.
Reduces training complexity.

Cost-Sensitive

r(si , a) =

{
−ξi if a ∈ Af

−Ca,yi if a ∈ Ay

Well-suited for features with
variable costs.

Grouped Fea-
tures Af = Agroup

T (s, aj ) = (x, z +
∑
i∈Fj

ei)

Well adapted to features
presenting a grouped nature.
Complexity is reduced.

Relational Fea-
tures

r(si , aj ) =


−λ if ( ∀f ∈ Z(x),

Related(fj , f ) = 1 )

−γ otherwise

Naturally suited for complex
feature inter-dependencies.



Medical Diagnosis: Results

Classifier Error Penalty Average Cost Accuracy
DWSM 800 181 0.75
DWSM 400 74 0.76

Li & Carin 800 180 0.75
Li & Carin 400 75 0.75

The modified DWSM MDP is able to compete with other state-of-the-art
cost-sensitive classifiers on the Pima Diabetes dataset.



Maximum Cost
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A hard limit on features makes attaining specific levels of sparsity easier.



Grouped Features for Image Classification
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With a penalty for each region, DWSM is able to maintain accuracy with
much less information consumption relative to a baseline method.



Regionally-Constrained Image Regions

0.43 0.66 0.38 0.32

0.21 0.04 0.33 0.41

0.43 0.07

Most utilized regions on the regionally-constrained MNIST task.



Structured Output Classification
Different tasks and Complex Transformations scheme:



Future Workd

I Online Budgeted Learning
I Budgeted constraints during learning
I Use of bandit-based methods or transfer learning techniques

I Classification under Realistic Budgets
I Time (in seconds)
I Electric Power Consumption
I ...

I Interaction in ML



Learning on the Web

Sequential Search Engines

I Find a relevant document for
a particular query in 1
minute

I Find me a good hotel in
Orsay in less than 3 days

I Organize my trip to
Barcelona

Sequential Recommender Systems
Able to ask questions to a new user (cold start)



Learning on the real world

Robots

I Tell me where you are in 5
seconds

I Find a target in 3 seconds

Visual Reinforcement Learning
Decide based on cameras

Sensors Networks
Choose which sensor to ask for collecting information



Learning on the Web and the real world

Web Social Robots

I Learning to talk

I fill my fridge

Not clear difference between robots and ML models.....



RCPI Complexity

I Inference Complexity is I(A) at each step
I I(A) is the cost of choosing the action to do
I I(A) = |A| when using One Against All classifiers.

I Learning Complexity: SAK × TI(A) + C(S ,A).
I TI(A) is the cost of sampling one trajectory of size T
I SAK is the number trajectories necessary during simulation.
I C(S ,A) is the cost of learning the corresponding classifier.

When using OVA classifiers, RCPI learning complexity is O(A2) !.



Error-Correcting Output Code (ECOC)

Error-Correcting Output Codes (ECOCs) have been used for multiclass
classification for a while (Dietterich and Bakiri (1995)). Each of the 5
labels is associated to a binary code of length 3.

b1 b2 b3

y1 + + −
y2 − + −
y3 + − +
y4 − + +
y5 + − −

I Minimum code length: C = log2(|Y|) .

I In general: C = γ log(|Y|) with γ ≈ 15.



ECOC Inference

b1 b2 b3 distH(+−+)

y1 + + − 2
y2 − + − 3
y3 + − + 0
y4 − + + 2

f1(x) = +

f2(x) = −

f3(x) = +

‘+−+’

f (x) = y3

I f (x) = argminy∈Y dHamming(y , (f1(x), f2(x), f3(x)))

I Only O(log(n)) classifiers.



ECOC–Training

Question
How to learn the γ log(n) classifiers fi∈[1,C ] ?

I Original labels are mapped to C binary label spaces:

y(x) = y3

c(y(x)) = (+,−,+)

y 1(x) = +

I One binary classifier learned for each space

Y 1 = {y 1(x) ∀x ∈ X}
f1 = Train(X ,Y 1)



ECOC for MDPs

ECOC w/ RCPI
RCPI allows for the use of any multiclass classifier to define a policy.

In this case we use an ECOC classifier, where each action is given a
binary label of length C = γ log(|A|).

b1 b2 b3

a1 + + −
a2 − + −
a3 + − +
a4 − + +
a5 + − −



General Idea (cont.)

We effectively define C new sub-policies, each one associated to a
particular binary mapping of the MDP.

πi : s → {+,−}
πi (s) = fi (s)

π(s) = argmin
a∈A

dHamming(Mc
[a,∗], (π1(s), · · · , πC (s)).

ERCPI

I The sub-policies are learned conjointly using the RCPI algorithm.

I Training is performed as for a standard ECOC multiclass classifier.



BRCPI

I ERCPI still requires the full policy πt−1 to be available for
simulation, and must still run a simulation for every action in every
state.

I ERCPI Learning complexity is O(A logA)

Second Idea
To reduce the complexity of this algorithm, we propose learning the C
binary sub-policies — πi∈[1,C ] — independently, transforming our initial
MDP into C sub-MDPs, each one corresponding to the environment in
which a particular πi is acting.
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BRCPI (cont.)

We can now define C new binary MDPs that we name sub-MDPs, and
denote Mi∈[1,C ].

I Si = S, the same state-set as the original MDP.

I Ai is the binary action set: {+,−}.
I Ti = T (s ′, s, a)P(a|ai ) = P(s ′|s, a)P(a|ai ).

I P(a|ai ) is the probability of choosing action a ∈ Aai , knowing that
the sub-action applied on the sub-MDP Mi is ai ∈ {+,−}.

I We consider P(a|+) to be uniform for a ∈ A+ and null for a ∈ A−,
and vice versa. P(s ′|s, a) is the original MDP’s transition probability.

I ri (s, ai ) =
∑

a∈Aai
i

P(a|ai )r(s, a).



BRCPI - Algorithm

Algorithm 2 BRCPI
1: procedure TRAIN–BRCPI(SR ,M, π0, K , T )

2: for i ∈ C do
3: πi = π0

4: repeat

5: ST = ∅
6: for s ∈ SR do

7: for a ∈ {+,−} do

8: Q̃π (s, a) ← Rollout(Mi , s, a, K, πi )

9: A∗ = argmaxa∈A Q̃π (s, a)

10: for a∗ ∈ A∗ do
11: ST = ST ∪ {(s, a∗)}
12: fθi

= Train(ST)

13: π′i from fθi
as defined in Eq. (??)

14: πi = α(πi , π
′
i )

15: until πi ∼ π
′
i

return π(s) = argmina∈A dHamming(Mc
[a,∗]

, (π1(s), · · · , πC (s)).



Complexities

Complexities

Algorithm Simulation Cost Learning Cost

ORCPI O(A2) O(A)
ERCPI O(A log(A)) O(log(A))
BRCPI O(log(A)) O(log(A))



Mountain Car

I Mountain Car problem

I Actions (between −1 and 1) have been discretized
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Results
ERCPI gives similar results to ORCPI
BRCPI allows one to obtain a non-trivial sub-optimal policy



Maze

I Negative reward associated to some cells

I Base actions are up,down, and right

I We define sequences of base actions i.e. up, up, right
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Results
ERCPI outperforms ORCPI when the number of actions is large
BRCPI allows one to obtain a non-trivial sub-optimal policy when other
methods fail



Speedup

Tradeoff between training speed and policy quality.
Mountain Car - 100 Actions - 46 bits

Sim. Learning Total Speedup
OVA 4312 380 4698 ×1.0

ERCPI 3188 190 3378 ×1.4(×1.35)
BRCPI 184 190 374 ×12.5(×23.5)



Questions

I Sequential approaches for learning datum-wise sparse representations
– G Dulac-Arnold, L Denoyer, P Preux, P Gallinari in Machine
learning 2012

I Structured prediction with reinforcement learning – F Maes, L
Denoyer, P Gallinari, in Machine learning 2009


